首页> 外文期刊>International journal of applied mechanics >Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula
【24h】

Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula

机译:伊比利亚半岛的多尺度SMOS和SMAP土壤水分产品的评估

获取原文
获取原文并翻译 | 示例
           

摘要

In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth's surface soil moisture (SSM): the ESA's Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA's Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth's surface emission. These measurements (brightness temperatures T-B) are then used to generate global maps of SSM every three days with a spatial resolution of about 30-40 km and a target accuracy of 0.04 m(3)/m(3). To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP T-B or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active-passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at T-B or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation.
机译:在过去的十年中,技术进步导致推出两种卫星任务致力于测量地球表面土壤水分(SSM):ESA的土壤水分和海洋盐度(SMOS)于2009年推出,美国宇航局的土壤水分活跃被动(SMAP) )在2015年推出。两颗卫星有一个L带微波辐射计,用于测量地球的表面排放。然后使用这些测量(亮度温度T-B)每三天生成SSM的全球地图,其空间分辨率约为30-40 km,目标精度为0.04 m(3)/ m(3)。为了满足当地应用需求,已提出不同的方法来空间分解SMOS和SMAP T-B或SSM产品。它们依赖于多传感器观测之间的协同作用,并建立在不同的物理假设之上。在本研究中,评估了来自SMOS和SMAP的六种操作SSM产品的时间和空间特征,以诊断他们的不同特征,以及它们背后的理由。该研究专注于伊比利亚半岛,涵盖2015年4月至2017年12月。使用来自萨拉曼卡大学(Remedhus)的土壤水分测量站网络的原位SSM数据进行了时间间比较分析。评估不同产品的空间量表的影响(1,3,9,25和36公里)及其在时间动态方面的对应关系。对于整个伊比利亚半岛进行空间分析,重点是增强的分辨率产品提供基于微波 - 光学(SMOS / ERA5 / MODIS)或主动被动微波(SMAP / SENTINEL-1)传感器提供的增加值融合。我们的结果表明,与原位测量相比,产品系列的时序序列的总体一致性。尽管如此,需要更高的空间分辨率来捕获局部特征,如在1公里的像素刻度上不占主导地位的小灌溉区域。通过增强的分辨率产品解决空间特征的程度取决于所采用的多传感器协同效应(在T-B或土壤水分级别),以及所使用的微量信息的性质。这些产品之间的最大差异发生在森林区域,这可能与高分辨率活性微波和光学数据的灵敏度降低,以在密集植被下的土壤性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号