...
首页> 外文期刊>Integrative Biology: quantitative biosciences from nano to macro >Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip
【24h】

Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip

机译:使用微流体芯片在高血糖病症下Caenorhabditis elegans体壁肌肉肌肌肌肉的定量荧光成像

获取原文
获取原文并翻译 | 示例
           

摘要

Type 2 diabetes is the most common metabolic disease, and insulin resistance plays a role in the pathogenesis of the disease. Because completely functional mitochondria are necessary to obtain glucose-stimulated insulin from pancreatic beta cells, dysfunction of mitochondrial oxidative pathway could be involved in the development of diabetes. As a simple animal model, Caenorhabditis elegans renders itself to investigate such metabolic mechanisms because it possesses insulin/insulin-like growth factor-1 signaling pathway similar to that in humans. Currently, the widely spread agarose pad-based immobilization technique for fluorescence imaging of the mitochondria in C. elegans is laborious, batchwise, and does not allow for facile handling of the worm. To overcome these technical challenges, we have developed a single-channel microfluidic device that can trap a C. elegans and allow to image the mitochondria in body wall muscles accurately and in higher throughput than the traditional approach. In specific, our microfluidic device took advantage of the proprioception of the worm to rotate its body in a microfluidic channel with an aspect ratio above one to gain more space for its undulation motion that was favorable for quantitative fluorescence imaging of mitochondria in the body wall muscles. Exploiting this unique feature of the microfluidic chip-based immobilization and fluorescence imaging, we observed a significant decrease in the mitochondrial fluorescence intensity under hyperglycemic conditions, whereas the agarose pad-based approach did not show any significant change under the same conditions. A machine learning model trained with these fluorescence images from the microfluidic device could classify healthy and hyperglycemic worms at high accuracy. Given this significant technological advantage, its easiness of use and low cost, our microfluidic imaging chip could become a useful immobilization tool for quantitative fluorescence imaging of the body wall muscles in C. elegans.
机译:2型糖尿病是最常见的代谢疾病,胰岛素抵抗在疾病的发病机制中起着作用。因为完全功能性线粒体是从胰腺β细胞获得葡萄糖刺激的胰岛素,所以线粒体氧化途径的功能障碍可参与糖尿病的发育。作为一种简单的动物模型,Caenorhabditise elegans使本身可以调查这种代谢机制,因为它具有类似于人类的胰岛素/胰岛素样生长因子-1信号通路。目前,广泛扩散的琼脂糖基垫的固定化技术在C.杆状杆菌中的线粒体荧光成像是费力的,分批的,并且不允许蠕虫处理。为了克服这些技术挑战,我们开发了一种单通道的微流体装置,可以捕获C.杆状杆菌,并准确地和吞吐量高于传统方法的吞吐量。具体而言,我们的微流体装置利用蜗杆的预见,以将其主体旋转在微流体通道中,以高于一个纵横比,以获得更多的空间,以获得其在体壁肌肉中线粒体的定量荧光成像的流动性荧光显像。利用这种基于微流体芯片的固定化和荧光成像的独特特征,我们观察到高血糖条件下的线粒体荧光强度显着降低,而基于琼脂糖垫的方法在相同条件下没有显示出任何显着变化。使用来自微流体装置的这些荧光图像训练的机器学习模型可以高精度地分类健康和高血糖蠕虫。鉴于这种显着的技术优势,它的使用和低成本的容易性,我们的微流体成像芯片可能成为C.秀丽隐杆线虫的体壁肌肉的定量荧光成像的有用固定工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号