首页> 外文期刊>Icarus: International Journal of Solar System Studies >Firn densification in a Late Noachian 'icy highlands' Mars: Implications for ice sheet evolution and thermal response
【24h】

Firn densification in a Late Noachian 'icy highlands' Mars: Implications for ice sheet evolution and thermal response

机译:FiRN致密化在半岛的“冰冷的高地”火星:对冰板演化和热反应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Recent modeling of a thicker early CO2 martian atmosphere and Late Noachian climate predicts that for pressures beyond a fraction of a bar, atmosphere-surface thermal coupling occurs, resulting in adiabatic cooling of high areas across Mars. This promotes the transport of water ice from relatively warmer low-lying areas to the highlands, where deposition and accumulation of water ice result in an "icy highlands" Late Noachian Mars. Deposits will remain stable in the highlands under nominal Late Noachian conditions, but the potential exists for punctuated heating by both top-down (e.g. impacts, volcanism) and bottom-up (e.g. elevated geothermal heat flux) processes. Important in understanding melt generation from these processes is the state of the accumulated snow and ice. Through modeling of the firn densification process in the "icy highlands" framework we assess: (1) the nature of snow accumulation and the physical growth and evolution of the predicted ice deposits, and (2) the implications for the thermal properties of the ice sheets and the response to heating events. Analysis of the firn densification process in the "icy highlands" context indicates that: (1) the upper layers of the ice sheet will be more vulnerable to melting from top-down heating processes because they are comprised of the least dense and least thermally conductive ice, and (2) even with a low thermal conductivity firn layer, basal melting is only likely to occur through a combination of top-down and bottom-up heating. This is because at the nominal mean annual surface temperatures and estimated effective thermal conductivities, the predicted ice sheet thicknesses do not produce enough basal warming to initiate melting for plausible geothermal heat fluxes. Variations in spin-axis/orbital parameters alone are not predicted to cause widespread ablation (melting and sublimation) of the icy highlands ice sheets. (C) 2015 Elsevier Inc. All rights reserved.
机译:最近厚的早期二氧化碳火星大气和半町气候的建模预测,对于大部分杆的压力,发生气氛表面热耦合,导致火星跨越高位面积的绝热冷却。这促进了从相对温暖的低洼地区到高地的水冰的运输,其中沉积和积水的沉积和积累在“冰冷的高地”晚诺阿霍斯火星。存款将在名义上晚町条件下的高地稳定,但是通过自上而下(例如,影响,火山)和自下而上(例如升高的地热热通量)工艺来存在标点加热的潜力。重要的是在理解这些过程中的熔体生成方面是积累的雪和冰的状态。通过在“冰冷的高地”框架中的FIRN致密化过程的建模,我们评估:(1)积雪积累的性质和预测冰沉积的物理生长和演变,以及(2)对冰的热特性的影响床单和对加热事件的响应。 “冰冷的高地”上下文中的FIRN致密化过程的分析表明:(1)冰盖的上层将从自上而下的加热过程中更容易熔化,因为它们包括最小致密和最常见的导电性冰和(2)即使具有低导热率FiRN层,基础熔化也仅通过自上而下和自下而上加热的组合来发生。这是因为在标称平均年表面温度和估计有效的热导体中,预测的冰盖厚度不会产生足够的基础变暖以引发可合理的地热量热通量的熔化。单独的旋转轴/轨道参数的变化不预测导致冰冷的高地冰盖的广泛消融(熔化和升华)。 (c)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号