...
首页> 外文期刊>Annals of Physics >Stationary phase method and delay times for relativistic and non-relativistic tunneling particles
【24h】

Stationary phase method and delay times for relativistic and non-relativistic tunneling particles

机译:相对论和非相对论隧道粒子的固定相法和延迟时间

获取原文
获取原文并翻译 | 示例
           

摘要

The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for some specifical colliding configurations. we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an anti-symmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.
机译:经常采用固定相法用于计算与潜在屏障碰撞的分析连续高斯或无限带宽步长脉冲的隧道相时间。本报告涉及推断量子散射途径的基本概念:静止相法及其与相对论和非相对论隧道颗粒的延迟时间的关系。在重新审视上述屏障扩散问题之后,我们注意到该方法的适用性受到若干微小的限制,在衍生描述散射波分组的定位的相位。使用最近开发的过程 - 多波包分解 - 对于某些细节碰撞配置。我们证明,当施用阶段方法以获得阶段(遍历)时出现的分析困难都是克服。在这种情况下,我们还研究了量程与量子隧道/散射之间的相位和停留时间之间的一般关系。考虑到具有一维屏障的两个相同波包的对称碰撞,我们证明了这两个不同的传输时间定义是明确连接的。获得对对称的(两个相同的玻子)和抗对称(两种相同的费粒)量子碰撞配置获得的遍历时间。多个波分组分解表明,相位时间(组延迟)描述了散射粒子的确切位置,并且除了与停留时间的确切关系之外,还导致对两个传输时间定义进行校正概念理解。最后,我们将非相对论的形式主义扩展到相对论(DIRAC至Klein-Gordon)波动方程中的一维静电电位的隧道区域的隧道区域的解决方案,其中进入波浪分组表现出几乎完全传输的可能性潜在的屏障。发生加速和最终,超级隧道隧道传输概率的情况全部量化,重新判断了基于非相对论隧道动力学的有问题的超阵容解释。关于相对论隧道的动态和其解决方案的数学结构的经验教训表明,在单层和双层石墨烯中展示了在数学上类似的冷凝物实验中的见解,其加速的隧道效应应该更加仔细研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号