首页> 外文期刊>Annals of Physics >Quantum information in the Posner model of quantum cognition
【24h】

Quantum information in the Posner model of quantum cognition

机译:量子认知Posner模型中的量子信息

获取原文
       

摘要

Matthew Fisher recently postulated a mechanism by which quantum phenomena could influence cognition: Phosphorus nuclear spins may resist decoherence for long times. The spins would serve as biological qubits. The qubits may resist decoherence longer when in Posner molecules. We imagine that Fisher postulates correctly. How adroitly could biological systems process quantum information (QI)? We establish a framework for answering. Additionally, we construct applications of biological qubits to quantum error correction, quantum communication, and quantum computation. First, we posit how the QI encoded by the spins transforms as Posner molecules form. The transformation points to a natural computational basis for qubits in Posner molecules. From the basis, we construct a quantum code that detects arbitrary single-qubit errors. Each molecule encodes one qutrit. Shifting from information storage to computation, we define the model of Posner quantum computation. To illustrate the model's quantum-communication ability, we show how it can teleport information incoherently: A state's weights are teleported. Dephasing results from the entangling operation's simulation of a coarse-grained Bell measurement. Whether Posner quantum computation is universal remains an open question. However, the model's operations can efficiently prepare a Posner state usable as a resource in universal measurement-based quantum computation. The state results from deforming the Affleck-Kennedy-Lieb-Tasaki (AKLT) state and is a projected entangled-pair state (PEPS). Finally, we show that entanglement can affect molecular-binding rates, boosting a binding probability from 33.6% to 100% in an example. This work opens the door for the Ql-theoretic analysis of biological qubits and Posner molecules. (C) 2018 Elsevier Inc. All rights reserved.
机译:Matthew Fisher最近假设了量子现象可能影响认知的机制:磷核旋转可能长时间抵抗干式障碍。旋转将作为生物额度。在POSNER分子中时,QUBIT可以抵抗更长时间的堵塞。我们想象渔民正好定位。如何互动系统处理量子信息(qi)?我们建立了一个回答的框架。另外,我们构建生物Qubits的应用到量子纠错,量子通信和量子计算。首先,我们对旋转编码的Qi是如何变换为Posner分子形式的方式。转化点指向POSNER分子中QUBITS的自然计算基础。从基础上,我们构造一个检测任意单QUBBit错误的量级代码。每个分子编码一个Qutrit。从信息存储转移到计算,我们定义了Posner量子计算的模型。为了说明模型的量子通信能力,我们展示了它如何传送信息:州的重量被传击。从缠结操作的粗粒度测量的模拟中断的结果。 Posner量子计算是否普遍仍然是一个开放的问题。然而,模型的操作可以有效地准备可用作基于通用测量的量子计算中的资源的Posner状态。该州的结果是变形的变形 - 肯尼迪-Taisaki(AKLT)状态,是一个投影的纠缠与州(PEPS)。最后,我们表明纠缠可以影响分子结合速率,在一个例子中升高了33.6%至100%的结合概率。这项工作为生物夸张和Posner分子的QL-理论分析打开了门。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号