首页> 外文OA文献 >Quantum information in the Posner model of quantum cognition
【2h】

Quantum information in the Posner model of quantum cognition

机译:量子认知Posner模型中的量子信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Matthew Fisher recently postulated a mechanism by which quantum phenomenacould influence cognition: Phosphorus nuclear spins may resist decoherence forlong times. The spins would serve as biological qubits. The qubits may resistdecoherence longer when in Posner molecules. We imagine that Fisher postulatescorrectly. How adroitly could biological systems process quantum information(QI)? We establish a framework for answering. Additionally, we apply biologicalqubits in quantum error correction, quantum communication, and quantumcomputation. First, we posit how the QI encoded by the spins transforms asPosner molecules form. The transformation points to a natural computationalbasis for qubits in Posner molecules. From the basis, we construct a quantumcode that detects arbitrary single-qubit errors. Each molecule encodes onequtrit. Shifting from information storage to computation, we define the modelof Posner quantum computation. To illustrate the model's quantum-communicationability, we show how it can teleport information incoherently: A state'sweights are teleported; the coherences are not. The dephasing results from theentangling operation's simulation of a coarse-grained Bell measurement. WhetherPosner quantum computation is universal remains an open question. However, themodel's operations can efficiently prepare a Posner state usable as a resourcein universal measurement-based quantum computation. The state results fromdeforming the Affleck-Lieb-Kennedy-Tasaki (AKLT) state and is a projectedentangled-pair state (PEPS). Finally, we show that entanglement can affectmolecular-binding rates (by 0.6% in an example). This work opens the door forthe QI-theoretic analysis of biological qubits and Posner molecules.
机译:Matthew Fisher最近假设了量子现象accound认知的机制:磷核旋转可能抵抗延伸时间。旋转将作为生物额度。在POSNER分子中时,QUBITS可能会抵抗更长的抵抗力。我们想象的是,费舍尔过后。如何嘲笑生物系统处理量子信息(qi)?我们建立了一个回答的框架。此外,我们在量子纠错,量子通信和量子计算中应用生物态。首先,我们对旋转编码的Qi是如何改变asposner分子形式的方式。转化点为Posner分子中的Qubits的天然计算。从基础上,我们构造了一个检测任意单反误差的量子码。每个分子编码一个qutrit。从信息存储转换到计算,我们定义了Posner量子计算的模型。为了说明模型的量子可汇编性,我们展示了它如何传送信息:一个国家的网络被传击;一致性不是。来自突出的粗粒测量的angling操作模拟的脱离结果。是否普遍仍然是一个打开的问题。然而,Themodel的操作可以有效地准备作为基于资源通用测量的量子计算的Posner状态。该状态结果是从Affleck-Lieb-Kennedy-Tasaki(Aklt)状态的结果,是一个项目的Projectantangled - 对州(PEPS)。最后,我们表明纠缠可以影响分子结合率(在一个例子中的0.6%)。这项工作开辟了对生物夸张和Posner分子的气象分析的门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号