...
首页> 外文期刊>Atmospheric Measurement Techniques >Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements
【24h】

Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

机译:使用电化学传感器来测量空气污染:校正干扰响应和验证测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O-3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, +/- 1 sigma) : [CO] = 231 +/- 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 +/- 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 +/- 8.3 ppb (spanning 0-71 ppb), and [O-3] = 23.2 +/- 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmen-tal conditions over three seasons (sensor flow-cell temperature = 23.4 +/- 8.5 degrees C, spanning 4.1 to 45.2 degrees C; and relative humidity = 50.1 +/- 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.
机译:我们生活,工作和游戏的环境受到空气污染物浓度的巨大变化。为了充分表征空气质量(AQ),测量必须快速(实时),可伸缩,可靠(以已知的精度,精度,精度和稳定性)。低成本的空气质量传感器技术为快速和分布式测量提供了新的机会,但在逼真的环境采样条件下评估传感器性能方面存在持久的表征差距。这限制了我们通知公众关于污染源和激励政策制定者的能力,以解决与空气质量有关的环境司法问题。在本文中,报道了用最近开发的低成本空气质量传感器系统获得的初始结果。在该项目中,通过4.5个月的时间间隔内使用带有的4.5个月的时间间隔来获取数据,在此期间传感器系统与配备有参考仪器测量的最具状态(Massachusetts,USA)空气质量监测站的传感器系统污染物物种。本文重点介绍验证CO,NO,NO2和O-3的电化学(EC)传感器测量,以污染物浓度范围(百亿卢比,PPB; 5分钟平均值,+/- 1 sigma) :[co] = 231 +/- 116 ppb(跨越84-1706 ppb),[否] = 6.1 +/- 11.5 ppb(跨越0-209 ppb),[no2] = 11.7 +/- 8.3 ppb(跨越0 -71 ppb)和[o-3] = 23.2 +/- 12.5 ppb(跨越0-99 ppb)。通过使用高维模型表示(HDMR),我们表明,从可变环境气体浓度混合物和改变的环境 - 缩小条件(传感器流动细胞温度= 23.4 +/- 8.5摄氏度)来展示来自变量环境气体浓度混合和变化的环境条件。跨越4.1至45.2℃;相对湿度= 50.1 +/-15.3%,跨越9.8-79.9%)可有效地为αenseCo-B4,No-B4,No2-B43F和Ox-B421传感器进行有效地建模,屈服(平均5分钟)均线平均误差(RMSE)分别为39.2,4.52,4.56和9.71 ppb。我们的结果证实了可与这些传感器启用的分布式空气污染测量的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号