首页> 外文期刊>Atmospheric Measurement Techniques >Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements
【24h】

Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

机译:使用电化学传感器测量空气污染:校正干扰响应并验证测量结果

获取原文
           

摘要

The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NOsub2/sub, and Osub3/sub at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5?min averages, ±1iσ/i): [CO]??=??231?±?116?ppb (spanning 84–1706?ppb), [NO]??=??6.1?±?11.5?ppb (spanning 0–209?ppb), [NOsub2/sub]??=??11.7?±?8.3?ppb (spanning 0–71?ppb), and [Osub3/sub]??=??23.2?±?12.5?ppb (spanning 0–99?ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature??=??23.4?±?8.5?°C, spanning 4.1 to 45.2?°C; and relative humidity??=??50.1?±?15.3?%, spanning 9.8–79.9?%) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5?min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71?ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.
机译:我们生活,工作和娱乐的环境在空气污染物浓度方面变化很大。为了充分表征空气质量(AQ),测量必须快速(实时),可扩展且可靠(随时间推移具有已知的精度,精度和稳定性)。低成本的空气质量传感器技术为快速和分布式测量提供了新的机会,但是在评估实际环境采样条件下的传感器性能时,仍然存在持续的表征差距。这限制了我们向公众通报污染源的能力,并激励决策者解决与空气质量有关的环境正义问题。在本文中,报告了使用最新开发的低成本空气质量传感器系统获得的初步结果。在该项目中,使用ARISense集成传感器套件在4.5个月的时间间隔内获取了数据,在此期间,传感器系统与由国家运营的空气质量监测站(位于美国马萨诸塞州)一起安装,该监测站配备了测量该数据的参考仪器污染物种类。本文着重于验证具有污染物浓度范围(百万分之十亿分之十)的城市邻里站点中CO,NO,NO 2 和O 3 的电化学(EC)传感器测量结果体积,ppb;平均5?min,±1 σ):[CO] ?? =?231?±?116?ppb(跨度84–1706?ppb),[NO] ?? = ?? 6.1±±11.5ppb(范围为0–209?ppb),[NO 2 ] ?? =?11.7±±8.3?ppb(范围为0–71?ppb) ,并且[O 3 ] ?? =?23.2?±?12.5?ppb(跨度0–99?ppb)。通过使用高维模型表示(HDMR),我们显示了来自三个季节中变化的环境气体浓度混合和变化的环境条件(传感器流动池温度≥23.4≤±8.5?可以有效地模拟Alphasense CO-B4,NO-B4,NO2的温度范围为°C,范围为4.1至45.2?C;相对湿度?? =?50.1?±?15.3%,范围为9.8-79.9%。 -B43F和Ox-B421传感器的平均均方根误差(RMSE)分别为39.2、4.52、4.56和9.71ppb(均值)。我们的结果证实了使用这些传感器可以进行分布式空气污染测量的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号