首页> 外文期刊>Atmospheric environment >Spatial modelling of participate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction
【24h】

Spatial modelling of participate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction

机译:社区科学家在骑自行车时收集的参与物质空气污染传感器测量的空间建模,利用空间交叉验证的土地利用回归,以及机器学习对数据校正的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Fine particulate matter air pollution is a global issue; cycling is a global activity. In our paper, particulate matter less than 2.5 mu m (PM2.5) air pollution data obtained by community scientists while cycling is used to develop high-resolution spatial air pollution maps. Mapping is completed using a land use regression model for Charlotte, North Carolina. The air pollution observations were obtained with a low-cost sensor. We evaluated the accuracy of the sensor through a collocation study for 3203 h, which identified the sensor had a mean bias of 7.25 mu g/m(3) and a correlation of r = 0.77 with an US EPA Federal Equivalent Monitor. A machine learning model was developed to adjust the sensor observations, which demonstrated their highest errors during periods of high humidity. The adjustment was able to reduce the root mean squared error from 12 mu g/m(3) to 3.8 mu g/m(3), and the mean bias was reduced to -0.5 mu g/m(3). Cycling times were not balanced throughout the day nor the year. We applied a temporal adjustment algorithm to account for this imbalance in observation periods with the intention of producing long-term estimates representing the sampling period of 2016 and 2017. The long-term air pollution surface for the city was generated with a land use regression model. Both linear regression and machine learning approaches were applied. The linear regression model performed poorly with a training R-2 of 0.15 and a crossvalidation R-2 of 0.15. A stacked ensemble model was developed using machine learning, which had a training 5-fold cross-validation mean residual deviance of 3.82 mu g/m(3), a mot mean squared error of 1.95 mu g/m(3), and a mean absolute error of 0.95 mu g/m(3). Performance remained strong during cross-validation, which included both a random sample approach (RMSE = 1.52 mu g/m(3)) and a spatial blocking cross-validation method (RMSE = 2.8 mu g/m(3)).
机译:细颗粒物质空气污染是一个全球性问题;骑自行车是一个全球活动。在本文中,颗粒物质小于2.5亩(PM2.5)社区科学家获得的空气污染数据,同时使用循环,用于开发高分辨率空间空气污染图。使用夏洛特,北卡罗来纳州的土地使用回归模型完成了映射。用低成本传感器获得空气污染观察。我们通过对3203h的裂缝研究评估了传感器的准确性,该分组鉴定了传感器的平均偏差为7.25μg/ m(3),并与美国EPA联邦等效显示器的r = 0.77的相关性。开发了一种机器学习模型来调整传感器观察,这在高湿度期间展示了它们的最高误差。调节能够将来自12μg/ m(3)至3.8μg/ m(3)的根部平均平方误差减少,平均偏压降至-0.5μg/ m(3)。骑自行车时间在全天也没有平衡,也没有年度。我们应用了一个时间调整算法,以考虑观察期内的这种不平衡,意图制定代表2016年和2017年的采样期的长期估计数。该市的长期空气污染面是用土地利用回归模型产生的。应用线性回归和机器学习方法。线性回归模型与0.15的训练R-2和0.15的r-2的训练R-2进行。使用机器学习开发了一种堆叠的集合模型,该机器学习具有培训5倍交叉验证的平均残留偏差为3.82μg/ m(3),MOT平均平方误差为1.95 mu g / m(3),以及a意味着0.95 mu g / m(3)的绝对误差。交叉验证期间性能保持强劲,包括随机采样方法(RMSE =1.52μg/ m(3))和空间阻塞交叉验证方法(RMSE =2.8μg/ m(3))。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号