首页> 外文期刊>Antioxidants and redox signalling >Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury
【24h】

Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury

机译:用线粒体复合物I在脑缺血/再灌注损伤中氧化还原依赖性损失Flavin

获取原文
获取原文并翻译 | 示例
           

摘要

Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 000-000.
机译:目的:脑缺血/再灌注(I / R)与线粒体功能的损害有关。然而,没有完全理解线粒体失效的机制。本作作品是确定在小鼠新生脑缺氧缺血(HI)后再灌注后线粒体能量功能障碍的机制和时间过程。结果:HI /再灌注降低了线粒体复合物I的活性,其在再灌注30分钟后回收,然后在1小时后再次下降。络合物的差异较低,与非共价结合膜黄素单核苷酸(FMN)含量的损失并行发生。来自酶的FMN离解是由琥珀酸盐支持的反向电子转移引起的。在Hi /再灌注之前施用FMN前体核黄素与梗死体积降低,神经缺陷的衰减和保存的络合物I活性与载体处理的小鼠相比。体外,琥珀酸盐氧化过程中的FMN释放速率不受氧气水平和内源性产生的反应性氧物质的影响。创新:我们的数据表明,来自线粒体复合物的FMN的解离I可以代表酶抑制的新机制,其在I / R中定义呼吸链失败。防止喂养期间释放的策略和再灌注释放可能会限制能量衰竭和脑致损伤的程度。急性I / R诱导的综合体损伤的提出机制与均接受的氧化胁迫介导的I / R损伤机制不同。结论:我们的研究是第一个突出线粒体复合体I-FMN解离在新生大脑高再灌注损伤发展中的关键作用。 Antioxid。氧化还原信号。 31,000-000。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号