...
首页> 外文期刊>Applied Soft Computing >Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
【24h】

Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label

机译:滚子轴承故障诊断使用堆积的去噪自动化器在深度学习和Gath-Geva聚类算法中,没有主成分分析和数据标签

获取原文
获取原文并翻译 | 示例
           

摘要

Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However, these fault diagnosis classification methods are only suitable for tagged datasets. Actually, many datasets are untagged in practical engineering. The clustering method can classify data without a label. Therefore, a method based on the SDAE and Gath-Geva (GG) clustering algorithm for roller bearing fault diagnosis without a data label is proposed in this study. First, SDAE is selected to extract the useful feature and reduce the dimension of the vibration signal to two or three dimensions direct without principal component analysis (PCA) of the final hidden layer. Then GG is deployed to identify the different faults. To demonstrate that the feature extraction performance of the SDAE is better than that of the SAE and EEMD with the FE model, the PCA is selected to reduce the dimension of eigenvectors obtained from several previously hidden layers, except for the final hidden layer. Compared with SAE and ensemble empirical mode decomposition (EEMD)-fuzzy entropy (FE) models, the results show that as the number of the hidden layers increases, all the fault samples under different conditions are separated better by using SDAE rather than those feature extraction models mentioned. In addition, three evaluation indicators such as PC, CE, and classification accuracy are used to assess the performance of the method presented. Finally, the results show that the clustering effect of the method presented, and its classification accuracy are superior to those of the other combination models, including the SAE-fuzzy C-means (FCM)/Gustafson-Kessel (GK)/GG and EEMD-fuzzy entropy FE-PCA-FCM/GK/GG. (C) 2018 Elsevier B.V. All rights reserved.
机译:大多数深度学习模型,如堆叠的autoencoder(sae)和堆叠的去噪自动化器(sdae)用于使用数据标签进行故障诊断。这些模型用于提取具有多个隐藏层的有用功能,然后使用分类器来完成故障诊断。但是,这些故障诊断分类方法仅适用于标记的数据集。实际上,许多数据集在实际工程中没有标记。群集方法可以在没有标签的情况下对数据进行分类。因此,在本研究中提出了一种基于SDAE和Gath-Geva(GG)聚类算法的方法,该方法在本研究中提出了没有数据标签的滚子轴承故障诊断。首先,选择SDAE以提取有用的特征,并将振动信号的尺寸降低到直接的最终隐藏层的主成分分析(PCA)的两三维。然后部署GG以识别不同的故障。为了证明SDAE的特征提取性能比SAE和EEMD的特征提取性能与FE模型更好,选择PCA以减少从几个先前隐藏的层获得的特征向量的尺寸,除了最终隐藏层。与SAE和集合经验模型分解(EEMD) - 布置熵(FE)模型相比,结果表明,随着隐藏层的数量增加,通过使用SDAE而不是那些特征提取来更好地分离不同条件下的所有故障样本模特提到。此外,使用PC,CE和分类精度等三个评估指标用于评估所提出的方法的性能。最后,结果表明,所呈现的方法的聚类效应及其分类精度优于其他组合模型的效果,包括SAE-FIZZY C-Means(FCM)/ Gustafson-Kessel(GK)/ GG和EEMD -Fuzzy熵FCA-FCM / GK / GG。 (c)2018 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号