首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Variable pathways, residence time, and geochemical evolution of seepage beneath the Mississippi River levee during the 2011, 2015, and 2016 floods
【24h】

Variable pathways, residence time, and geochemical evolution of seepage beneath the Mississippi River levee during the 2011, 2015, and 2016 floods

机译:在2011年,2015年,2015年和2016年洪水中密西西比河堤防下渗流的可变途径和地球化学演变

获取原文
获取原文并翻译 | 示例
           

摘要

Seepage beneath artificial levees is a common concern during flooding events. Risk of levee failure is elevated when piping erodes channels beneath the levee, evidenced by the formation of sand boils where transported sediments discharge. Along the lower Mississippi River, pathways of floodwater beneath the levee vary with surface geology, following deeper paths where the levee overlies fine-grained channel-fill deposits, and shallower (higher risk) paths where it overlies sand-bar deposits. Shallow, organic-rich alluvial aquifers are often geochemically stratified into upper oxic and lower anoxic zones, raising the possibility of using the geochemical signatures of discharging water from sand boils to differentiate flow pathways. A preliminary investigation north of Vicksburg, MS, (USA) during the 2011 Mississippi River flood demonstrated the potential of using geo-chemistry to identify deep and shallow pathways, though the study was limited to cation and trace element analyses. Sampling during the 2015 and 2016 floods for temperature, conductivity, redox potential (Eh), dissolved oxygen (DO), major ions, trace elements, tritium, and stable isotope ratios of oxygen, hydrogen, and strontium, facilitated a greater understanding of the nature of flow and geochemical evolution of groundwater in this environment. Characteristics of deeper flow pathways (relative to shallow) included (1) lower Eh and higher Fe and As, reflecting anoxic conditions and high-Fe sediments, (2) proportional increases in Fe and HCO3, indicating reductive dissolution of Fe-oxyhydroxides, and (3) higher ratios of Ba/Ca and Sr/Ca, reflecting differences in the elemental composition of minerals with depth. Tritium results indicate that subsurface flow pathways are dynamic, shifting spatially with the rapid changes in hydraulic gradients during and between flooding events. Estimated residence times of groundwater discharging from sand boils and relief wells ranged from essentially zero (discharge of concurrent floodwater) up to a quarter century. Lower strontium isotope ratios (Sr-87/Sr-86) were observed in the aquifer relative to river water, though with no clear variation with flow depth. Oxygen and hydrogen isotope ratios (delta O-18 and delta H-2) show evidence of partial evaporation prior to recharge, also with no apparent variation with subsequent flow depth.
机译:在洪水活动期间,人工堤坝下的渗漏是一个共同的问题。当堤坝下方的管道侵蚀通道时,堤坝失效的风险升高,通过形成沉积物排放的砂沸腾的形成证明。沿着下小密西西比河,堤坝下方的洪水途径随表面地质而变化,堤道堤坝的深层覆盖细粒通道填充沉积物,较浅(风险更高的风险)路径,覆盖砂杆沉积物。浅,有机含量的冲积含水层通常是地球织化学分层的上氧和下氧毒区,提高了使用从沙子沸腾的地球化学签名的可能性,以区分流动途径。 2011年密西西比河洪水北部的Vicksburg北部的初步调查显示,虽然该研究仅限于阳离子和痕量元素分析,但是在2011年Mississippi River洪水中展示了使用地质化学识别深层和浅途径的潜力。 2015年和2016年的洪水在2015年和2016年的温度,电导率,氧化还原电位(EH),溶解氧(DO),主要离子,微量元素,氚,氧,氢和锶的稳定同位素比例中,促进了对氧气,氢和锶的稳定性这种环境下地下水的流动性质和地球化学演化。更深的流动途径(相对于浅层)的特征包括(1)eh和更高的Fe,反射缺氧条件和高Fe沉积物,(2)对Fe和HCO 3的比例增加,表明Fe-羟基氧化物的还原溶解,和(3)BA / CA和SR / CA比率更高,反映了深度矿物质组成的差异。 TRITIUM结果表明,地下流动途径是动态的,随着水力梯度的快速变化在洪水事件期间和洪水发生之间的快速变化。估计从沙子沸腾和浮雕井地下水排出的停留时间范围从基本零(并发洪水排放)到四分之一世纪。相对于河水,在含水层中观察到下锶同位素比(SR-87 / SR-86),但流动深度没有明显的变化。氧气和氢同位素比率(Delta O-18和Delta H-2)显示在充电之前偏离的局部蒸发的证据,也没有明显的随后流动深度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号