首页> 外文期刊>ACS Chemical Biology >Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway
【24h】

Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway

机译:快速抑制谱鉴定核苷酸生物合成途径中的梯形靶标

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling?(RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.
机译:了解新抗菌剂的作用机制(MOA)是药物发现的关键步骤,但对于似乎抑制多种细胞途径的化合物众所周知。我们最近描述了基于图像的方法[细菌细胞学分析和快速诱导诱导型分析?(RIP)],用于鉴定抗生素靶向的细胞途径。在这里,我们已经应用了这些方法来检查参与嘧啶核苷酸生物合成中涉及的蛋白水解化降解酶的影响,该途径产生转录的中间体,DNA复制和细胞包膜合成。我们表明,直接参与脱氧核苷酸合成阻断DNA复制的快速去除酶。然而,催化核糖核苷酸和脱氧核糖核苷酸的合成中所涉及的反应的细胞基酯激酶(CMK)降解,阻断DNA复制和壁噻吩酸生物合成,其产生与通过同时抑制抗生素CIPROFloxacin的方法产生的细胞学效应。 Tunicamycin。我们的研究结果表明,RIP可用于识别和表征潜在的梯形酶,如CMK,其抑制显着影响多种途径,从而揭示了重要的代谢连接。识别和理解Keystone目标的作用也可能有助于确定似乎抑制多个目标的药物的Moas。

著录项

  • 来源
    《ACS Chemical Biology》 |2018年第12期|共8页
  • 作者单位

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

    Division of Biological Sciences University of California San Diego;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号