...
首页> 外文期刊>ACS catalysis >Mechanism of Cu-Catalyzed Aerobic C(CO)-CH3 Bond Cleavage: A Combined Computational and Experimental Study
【24h】

Mechanism of Cu-Catalyzed Aerobic C(CO)-CH3 Bond Cleavage: A Combined Computational and Experimental Study

机译:Cu催化的有氧C(CO)-CH3粘合性切割的机理:组合计算与实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cu-catalyzed aerobic C(CO)-CH3 activation of (hetero)aryl methyl ketones provides a rare tool for aldehyde formation from ketones through oxidative processes. To elucidate the detailed reaction mechanism, a combined computational and experimental study was performed. Computational study indicates a dinuclear Cu-catalyzed spin-crossover-involved mechanism explains the aldehyde formation. Meanwhile, alpha-mono(hydroxy)-acetophenone int1 was found to be the real active intermediate for the formation of benzaldehyde pro1 from acetophenone sub1. sub1 transforms into int1 via oxygen activation and rate determining C-alpha-H activation. The resulting dinuclear Cu complex regenerates the active Cu(I) complex through spin-crossover involved disproportionation and retro oxygen activation. int1 further generates pro1 via oxygen activation, O-H activation, iodide atom transfer, 1,2-H shift, ligand rotation, spin crossover, and nucleophilic substitution. By comparison, the previously proposed reaction route involving alpha,alpha-bis(hydroxy)acetophenone int3 is less kinetically favorable overall, but int3 can generate pro1 faster than int1 does via a dehydrogenation mechanism. These mechanistic discoveries are consistent with the previously reported KIE effect, deuterium-labeling experiment, different reactivity of sub1, int1 and int3, and detection of H-2 and CO2. Furthermore, computational study unexpectedly revealed the competitive generation of aromatic acids in the C(CO)-CH3 activation process for especially electron-rich substrates. This reaction route is supported by the experimental study, which confirmed the aromatic acid formation in Cu-catalyzed aerobic C(CO)-CH3 cleavage of ketones and excluded the in situ oxidation of aldehyde products to aromatic acid products.
机译:Cu催化的有氧C(CO)-CH 3活化(杂)芳基甲基酮提供通过氧化方法从酮的醛形成的稀有工具。为了阐明详细的反应机制,进行组合的计算和实验研究。计算研究表明了二核Cu催化的旋转杂交机制解释了醛形成。同时,发现α-单体(羟基) - 乙酰苯酮Int1是从苯乙酮Sub1形成苯甲醛Pro1的真正活性中间体。 Sub1通过氧激活和测定C-α-H激活转换为INT1。由此得到的二核Cu复合物通过旋转交叉涉及歧化和复古氧活化来再生活性Cu(I)复合物。 INT1进一步通过氧激活,O-H激活,碘化物原子转移,1,2-H偏移,配体旋转,旋转交叉和亲核取代来产生PRO1。相比之下,先前提出的涉及α的反应途径,α-双(羟基)苯酮Int3总体上具有较低的动力学,但Int3可以通过脱氢机制产生比Int1更快的Pro1。这些机制发现与先前报道的kie效应,氘标记实验,Sub1,Int1和Int3的不同反应性以及检测H-2和CO 2的检测。此外,计算研究意外地揭示了C(CO)-CH3活化方法中的芳族酸的竞争产生,特别是富含电子的基底。该反应途径得到了实验研究的支持,该研究证实了Cu催化的有氧C(CO)-CH3酮切割的芳香酸形成,并排除了醛产物的原位氧化至芳族酸产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号