首页> 外文期刊>ACS catalysis >Theoretical Modeling, Facile Fabrication, and Experimental Study of Optimally Bound Bilirubin Oxidase on Palladium Nanoparticles for Enhanced Oxygen Reduction Reaction
【24h】

Theoretical Modeling, Facile Fabrication, and Experimental Study of Optimally Bound Bilirubin Oxidase on Palladium Nanoparticles for Enhanced Oxygen Reduction Reaction

机译:钯纳米粒子上最佳胆红素氧化酶的理论建模,体面的制造和实验研究,用于增强氧还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an optimally bound bilirubin oxidase (BOD) (Myrothecium verrucaria) on palladium nano particles (Pd NPs) for enhanced oxygen reduction reaction (ORR). Theoretical modeling of BOD on Pd demonstrated that Pd has strong preferential binding to BOD via Ti copper (Cu) site because of its high adsorption energy. This preferential binding was accompanied by a reduction in distance between the Cu active sites and Pd which would result in an increase in electron transfer rate (k(cat)) and an enhancement in catalytic activity of BOD. Inspired by the computational results, a biocathode comprising carbon nanotube (CNT), Pd NPs, and BOD (CNT-Pd-BOD) was facilely fabricated using an electroless deposition method. The CNT-Pd-BOD biocathode exhibited higher catalytic activity (1.52 times) and kcat (1.71 times) when compared with CNT-BOD only biocathode. These results demonstrate Pd NPs as a suitable substrate for preferential binding with BOD to increase catalytic activity.
机译:本文介绍了钯纳米颗粒(PD NPS)上的最佳滨胆红素氧化酶(BOD)(Myrothecium verrucaria),用于增强氧还原反应(ORR)。 PD上BOD的理论建模证明,由于其高吸附能,PD通过Ti铜(Cu)位点具有强烈的优先结合对BOD。 该优先结合伴随着Cu活性位点和Pd之间的距离的降低,这将导致电子转移率(K(猫))的增加和BOD催化活性的增强。 通过计算结果的启发,使用无电沉积方法将包括碳纳米管(CNT),Pd NP和BOD(CNT-PD-BOD)的生物疗法进行施及。 与只有生物阴极的CNT-BOC相比,CNT-PD-BOD生物探测器呈现较高的催化活性(1.52倍)和KCAT(1.71次)。 这些结果证明了PD NP作为合适的基材,用于与BOD的优先结合以增加催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号