...
首页> 外文期刊>ACS catalysis >Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide
【24h】

Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide

机译:双电子和四电子电化学氧还原反应在氮气掺杂的氧化石墨烯氧化物中的机理

获取原文
获取原文并翻译 | 示例

摘要

Doped carbon-based systems have been extensively studied over the past decade as active electrocatalysts for both the two-electron (2e(-)) and four-electron (4e(-)) oxygen reduction reactions (ORRs). However, the mechanisms for ORR are generally poorly understood. Here, we report an extensive experimental and first-principles theoretical study of the ORR at nitrogen-doped reduced graphene oxide (NrGO). We synthesize three distinct NrGO catalysts and investigate their chemical and structural properties in detail via X-ray photoelectron spectroscopy, infrared and Raman spectroscopies, high-resolution transmission electron microscopy, and thin-film electrical conductivity. ORR experiments include the pH dependences of 2e(-) versus 4e(-) ORR selectivity, ORR onset potentials, Tafel slopes, and H/D kinetic isotope effects. These experiments show very different ORR behavior for the three catalysts, in terms of both selectivity and the underlying mechanism, which proceeds either via coupled proton-electron transfers (CPETs) or non-CPETs. Reasonable structural models developed from density functional theory rationalize this behavior. The key determinant between CPET vs non-CPET mechanisms is the electron density at the Fermi level under operating ORR conditions. Regardless of the reaction mechanism or electrolyte pH, however, we identify the ORR active sites as sp(2) carbons that are located next to oxide regions. This assignment highlights the importance of oxygen functional groups, while details of (modest) N-doping may still affect the overall catalytic activity, and likely also the selectivity, by modifying the general chemical environment around the active site.
机译:在过去的十年中,掺杂的碳基系统作为双电子(2E())和四电子(4e( - ))氧还原反应(ORRS)的活性电催化剂。然而,ORR的机制通常被理解得很差。在这里,我们报告了一种广泛的实验和一致原理的氮气掺杂的氧化石墨烯(NRGO)的理论研究。我们通过X射线光电子体光谱,红外和拉曼光谱,高分辨率透射电子显微镜以及薄膜电导率来综合三种不同的NRGO催化剂并详细研究它们的化学和结构性能。 ORR实验包括2E( - )与4E( - - )ORR选择性,ORR发作电位,TAFEL斜率和H / D动力学同位素效应的pH依赖性。这些实验表明,三种催化剂的选择性对三种催化剂具有非常不同的ORR行为,其两种选择性和底层机构都通过耦合的质子 - 电子转移(CPET)或非CPET进行。从密度泛函理论中开发的合理结构模型合理化了这种行为。 CPET与非CPET机制之间的关键决定因素是在操作ORR条件下的费米水平的电子密度。然而,无论反应机制还是电解质pH,我们将磁性活性位点鉴定为位于氧化物区域旁边的SP(2)碳。该任务突出了氧官能团的重要性,而(适度)N-掺杂的细节可以仍然影响整体催化活性,并且可以通过改变活性位点周围的一般化学环境来影响整体催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号