...
首页> 外文期刊>Advances in physics >Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes
【24h】

Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes

机译:旋转和轨道制度中有机半导体中激发态,电荷输送和电极化的磁场效应

获取原文
           

摘要

Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic-inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic-inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized pi electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin-spin interactions between orbitals. This article reviews recent progress on MFEs with the focus
机译:通过重新分配旋转群体,在室温下,可以影响有机材料中的光致发光,电致发光,光电流,喷射电流和介电常数,在室温下在室温下,产生巨大的现象,包括磁光致发光,磁电致发光,磁电磁的新出现现象 - 电流,磁电流和磁电介质。这些所谓的内在磁场效应(MFE)可以在单光子和高眶内材料下的线性和非线性调节中观察到在低和高轨道材料中的两光子激发下。另一方面,可以实现旋转注射以通过有机/铁磁杂交界面影响旋转依赖激发状态和电导,导致外在的MFE。上几年,MFES一直作为一种独特的实验工具,以揭示发光二极管,太阳能电池,存储器,场效应晶体管和激光装置中的激发态,电气传输和极化中的旋转依赖过程。最近,它们对先进的有机光电材料中的操作机制提供了关键的理解,例如热活化的延迟荧光发光材料,非饱和光伏杂交杂交和有机 - 无机杂交钙酸盐。虽然最初通过在可忽略的轨道动量下与分层PI电子的有机半导体材料在有机半导体材料中操作旋转状态来实现MFE,但最近的研究表明MFE也可以在发光,光伏和介电偏振中的强轨道动量和RASHBA效应下实现。 MFE从旋转制度到轨道制度的过渡,通过使用轨道之间的远程库仑和短程旋转旋转相互作用来实现新的机会。本文审查了焦点上的MFES上的最近进展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号