首页> 外文期刊>ACS Synthetic Biology >Modeling Genetic Circuit Behavior in Transiently Transfected Mammalian Cells
【24h】

Modeling Genetic Circuit Behavior in Transiently Transfected Mammalian Cells

机译:瞬时转染哺乳动物细胞中的遗传电路行为

获取原文
获取原文并翻译 | 示例
           

摘要

Binning cells by plasmid copy number is a common practice for analyzing transient transfection data. In many kinetic models of transfected cells, protein production rates are assumed to be proportional to plasmid copy number. The validity of this assumption in transiently transfected mammalian cells is not clear; models based on this assumption appear unable to reproduce experimental flow cytometry data robustly. We hypothesize that protein saturation at high plasmid copy number is a reason previous models break down and validate our hypothesis by comparing experimental data and a stochastic chemical kinetics model. The model demonstrates that there are multiple distinct physical mechanisms that can cause saturation. On the basis of these observations, we develop a novel minimal bin-dependent ODE model that assumes different parameters for protein production in cells with low versus high numbers of plasmids. Compared to a traditional Hill-function-based model, the bin-dependent model requires only one additional parameter, but fits flow cytometry input-output data for individual modules up to twice as accurately. By composing together models of individually fit modules, we use the bin-dependent model to predict the behavior of six cascades and three feed-forward circuits. The bin-dependent models are shown to provide more accurate predictions on average than corresponding (composed) Hill-function-based models and predictions of comparable accuracy to EQuIP, while still providing a minimal ODE-based model that should be easy to integrate as a subcomponent within larger differential equation circuit models. Our analysis also demonstrates that accounting for batch effects is important in developing accurate composed models.
机译:通过质粒拷贝数的分叉细胞是分析瞬态转染数据的常见做法。在许多转染细胞的动力学模型中,假设蛋白质生产率与质粒拷贝数成比例。这种假设在瞬时转染的哺乳动物细胞中的有效性尚不清楚;基于该假设的模型似乎无法稳健地再现实验性流式细胞术数据。我们假设高质粒拷贝数处的蛋白质饱和是之前模型中断并通过比较实验数据和随机化学动力学模型来验证我们的假设。该模型演示了有多种不同的物理机制,可能导致饱和度。在这些观察结果的基础上,我们开发了一种新的最小箱依赖性颂歌模型,该模型对于具有低相对于高量质粒的细胞中的蛋白质产生的不同参数。与传统的山函数为基础的模型相比,垃圾箱依赖模型只需要一个另外的参数,而是适合单个模块的流量细胞计数器输入 - 输出数据,直到两倍的准确。通过组合单独拟合模块的模型,我们使用垃圾箱依赖模型来预测六个级联和三个前馈电路的行为。依赖于垃圾箱依赖模型,可以平均提供比相应的(组成的)基于山功能的模型更准确的预测,以及可比准确性的预测,同时仍提供最小的基于颂的模型,应该容易地集成为a较大的微分式电路模型中的子组件。我们的分析还表明,批量效应的核算对于开发准确的组合模型非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号