...
首页> 外文期刊>ACS Synthetic Biology >Functional Analyses of Cassette Chromosome Recombinase C2 (CcrC2) and Its Use in Eliminating Methicillin Resistance by Combining CRISPR-Cas9
【24h】

Functional Analyses of Cassette Chromosome Recombinase C2 (CcrC2) and Its Use in Eliminating Methicillin Resistance by Combining CRISPR-Cas9

机译:盒式染色体重组酶C2(CCRC2)的功能分析及其在消除CRISPR-CAS9中消除甲氧西林抗性的用途

获取原文
获取原文并翻译 | 示例

摘要

Worldwide occurrence of methicillin-resistant Staphylococcus aureus (MRSA) poses enormous challenges for both communities and health care settings. Cassette chromosome recombinases (Ccr) specifically perform excision and acquisition of a staphylococcal cassette chromosome mec (SCCmec) in staphylococci and are responsible for the spread of methicillin resistance. This study explored the roles of CcrC2, a recently discovered Ccr, in the horizontal transfer of SCCmec and developed a potential means to control the spread of methicillin resistance. Knockout of CcrC2 completely aborted the excision of SCCmec, while overexpression of CcrC2 partially removed the SCCmec from the genome and transformed methicillin-resistant Staphylococcus aureus (MRSA) into methicillin-susceptible Staphylococcus aureus (MSSA). Moreover, two nucleotide residues (G5C6) in the direct repeat sequence within an att site were found to be critical for excision and acquisition efficiencies. To block the horizontal transfer of methicillin resistance, a SCCmec killer system was developed by combining the CcrC2-mediated SCCmec excision and the mecA-targeting CRISPR Cas9 machinery. The SCCmec killer transformed MRSA to MSSA and disrupted the mecA-carrying SCCmec intermediate, thereby eliminating methicillin resistance determinant mecA gene inside a MRSA cell and blocking the horizontal transfer of SCCmec. The SCCmec killer was versatile for efficiently removing multiple types of SCCmec elements. It is envisioned that this approach could offer a new means to control the spread of methicillin resistance.
机译:全球耐甲氧西林金黄色葡萄球菌(MRSA)对社区和医疗保健环境造成巨大挑战。盒式染色体重组酶(CCR)特异性地在葡萄球菌中进行切除和获取葡萄球菌的葡萄球菌染色体MEC(SCCMEC),并负责耐甲氧脲抗性。本研究探讨了CCRC2,最近发现的CCR的作用,在SCCMEC的水平转移中,开发了一种控制甲氧青霉素抗性的潜在装置。 CCRC2的敲门声完全中止了SCCMEC的切除,而CCRC2的过度表达部分地将SCCMEC从基因组分离并将耐甲氧脲的葡萄球菌(MRSA)转化为甲氧西林 - 易感金黄色葡萄球菌(MSSA)。此外,发现在ATT位点的直接重复序列中的两个核苷酸残基(G5C6)对切除和采集效率至关重要。为了阻断甲氧西林的水平转移,通过组合CCRC2介导的SCCMEC切除和MECA瞄准CRISP Cas9机械来开发SCCMec杀伤系统。 SCCMEC杀手将MRSA转化为MSSA并破坏了携带的MECA携带的SCCMEC中间体,从而消除了MRSA细胞内的甲氧西林抗性决定因子MECA基因并阻断了SCCMEC的水平转移。 SCCMEC杀手是有效地去除多种类型的SCCMEC元素的多功能。设想这种方法可以提供一种控制甲氧西林抗性的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号