...
首页> 外文期刊>Crystal growth & design >Hoogsteen-Watson-Crick 9-methyladenine:1-methylthymine complex: Charge density study in the context of crystal engineering and nucleic acid base pairing
【24h】

Hoogsteen-Watson-Crick 9-methyladenine:1-methylthymine complex: Charge density study in the context of crystal engineering and nucleic acid base pairing

机译:Hoogsteen-Watson-Crick 9-甲基腺嘌呤:1-甲基胸腺嘧啶复合物:晶体工程和核酸碱基配对中的电荷密度研究

获取原文
获取原文并翻译 | 示例

摘要

This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponent crystals is explored. Charge density topological investigations lead to reliable hydrogen-bond interaction energies consistent with the results of the DFT approach with Grimme dispersion correction applied. The cocrystal structure cohesive energy corresponds with the average stability of its components' crystals. This is in agreement with the experimental observations. Thus, formation of the particularly strong 9-methyladenine:1-methylthymine motif (interaction energy around -70 kJ·mol~(-1), DFT(B3LYP)/pVTZ, BSSE and dispersive corrections applied) may constitute the driving force for cocrystal growth. All three systems form molecular layers governed by hydrogen-bond interactions whereas interacting mostly dispersively with each other. The interlayer contacts are found to be significant. Formation of particularly short H?H contacts is a distinctive feature of the cocrystal lattice. Also, creation of the cis-Hoogsteen-Watson-Crick (cHW) adenine-thymine base pair motif (Leontis and Westhof classification), instead of creating the most frequently appearing DNA Watson-Crick base pair (cWW), is remarkable. It occurs that this A:U/T orientation is slightly more stable than the analogous cWW one. Nevertheless, in RNA chains, being more flexible than DNA molecules, the cHW A:U base pairing remains rather rarely encountered, which is probably the effect of the rigidity of nucleic acid chain backbones. In general, the purine-pyrimidine interaction strength is most sensitive to the directionality of the formed hydrogen bonds.
机译:这项研究提供了详细的电荷密度分布分析,并得到了全面的能量研究的支持。探究了9-甲基腺嘌呤:1-甲基胸腺嘧啶共晶体结构中分子间相互作用的性质,这些相互作用对于特定的单组分晶体而言是特定的。电荷密度拓扑研究得出可靠的氢键相互作用能,与应用Grimme色散校正的DFT方法的结果一致。共晶体结构的内聚能对应于其组分晶体的平均稳定性。这与实验观察一致。因此,形成特别强的9-甲基腺嘌呤:1-甲基胸腺嘧啶基序(相互作用能在-70 kJ·mol〜(-1)附近,DFT(B3LYP)/ pVTZ,BSSE和施加色散校正)可构成共晶的驱动力。增长。所有这三个系统形成受氢键相互作用支配的分子层,而彼此之间大部分为分散相互作用。发现层间接触是重要的。特别短的H 2 H接触的形成是共晶晶格的显着特征。同样,创建顺式-Hoogsteen-Watson-Crick(cHW)腺嘌呤-胸腺嘧啶碱基对基序(Leontis和Westhof分类),而不是创建最频繁出现的DNA Watson-Crick碱基对(cWW),也很引人注目。出现这种A:U / T方向比类似的cWW方向稍微更稳定的情况。然而,在比DNA分子更灵活的RNA链中,仍然很少遇到cHW A:U碱基配对,这可能是核酸链骨架刚性的影响。通常,嘌呤-嘧啶相互作用强度对形成的氢键的方向性最敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号