首页> 外文期刊>Acta biomaterialia >Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering
【24h】

Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering

机译:Laponite纳米粒子相关硅酸盐羟丙基甲基纤维素作为软骨组织工程的可注射增强互穿的渗透网络水凝胶

获取原文
获取原文并翻译 | 示例
           

摘要

Graphical abstract Display Omitted Abstract Articular cartilage is a connective tissue which does not spontaneously heal. To address this issue, biomaterial-assisted cell therapy has been researched with promising advances. The lack of strong mechanical properties is still a concern despite significant progress in three-dimensional scaffolds. This article’s objective was to develop a composite hydrogel using a small amount of nano-reinforcement clay known as laponites. These laponites were capable of self-setting within the gel structure of the silated hydroxypropylmethyl cellulose (Si-HPMC) hydrogel. Laponites (XLG) were mixed with Si-HPMC to prepare composite hydrogels leading to the development of a hybrid interpenetrating network. This interpenetrating network increases the mechanical properties of the hydrogel. The in vitro investigations showed no side effects from the XLG regarding cytocompatibility or oxygen diffusion within the composite after cross-linking. The ability of the hybrid scaffold containing the composite hydrogel and chondrogenic cells to form a cartilaginous tissue in vivo was investigated during a 6-week implantation in subcutaneous pockets of nude mice. Histological analysis of the composite constructs revealed the formation of a cartilage-like tissue with an extracellular matrix containing glycosaminoglycans and collagens. Overall, this new hybrid construct demonstrates an interpenetrating network which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, oxygen diffusion, or the ability of chondrogenic cells to self-organize in the cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects in a large animal model of articular cartilage defects. Statement of Significance Articular cartilage is a tissue that fails to heal spontaneously. To address this clinically relevant issue, biomaterial-assisted cell therapy is considered promising but often lacks adequate mechanical properties. Our objective was to develop a composite hydrogel using a small amount of nano reinforcement (laponite) capable of gelling within polysaccharide based self-crosslinking hydrogel. This new hybrid construct demonstrates an interpenetrating network (IPN) which enhances the hydrogel mechanical properties without interfering with its cytocompatibility, O 2 diffusion and the ability of chondrogenic cells to self-organize in cluster and produce extracellular matrix components. This composite hydrogel may be of relevance for the treatment of cartilage defects and will now be considered in a large animal model of articular cartilage defects.
机译:图形抽象显示省略摘要抽象关节软骨是一种不自发愈合的结缔组织。为了解决这个问题,已经研究了有希望的进展研究了生物材料辅助细胞疗法。尽管三维支架中的显着进展,但缺乏强大的机械性能仍然是一个问题。本文的目的是使用少量称为Laponites的少量纳米增强粘土开发复合水凝胶。这些丙酸盐能够在硅酸化羟丙基甲基纤维素(Si-HPMC)水凝胶的凝胶结构内自定义。将Laponites(XLG)与Si-HPMC混合以制备复合水凝胶,导致混合互穿网络的开发。该互进网络增加了水凝胶的机械性能。体外研究表明交联后复合材料内的细胞相容性或氧扩散的XLG没有副作用。在裸鼠的皮下袋中的6周植入期间,研究了含有复合水凝胶和软骨形成细胞在体内形成软骨组织的能力。复合构建体的组织学分析揭示了用含有糖蛋白酶聚糖和胶原蛋白的细胞外基质形成软骨状组织。总的来说,这种新的混合构造演示了一种互穿网络,其增强了水凝胶机械性能而不干扰其细胞间相容性,氧扩散或软骨细胞在簇中自组织的能力并产生细胞外基质组分。该复合水凝胶可能具有与关节软骨缺陷大型动物模型中的软骨缺陷的相关性相关性。显着性关节软骨的陈述是一种未能自发愈合的组织。为了解决这种临床相关问题,生物材料辅助细胞疗法被认为是有希望的,但往往缺乏足够的机械性能。我们的目的是使用能够在多糖的自交联水凝胶中胶凝的少量纳米增强(Laponite)进行复合水凝胶。该新的混合构建结构演示了一种互穿网络(IPN),其增强了水凝胶机械性能,而不干扰其细胞组成,O 2扩散和软骨细胞在簇中自组织的能力并产生细胞外基质组分。该复合水凝胶可能与治疗软骨缺陷的相关性,现在将在关节软骨缺陷的大型动物模型中考虑。

著录项

  • 来源
    《Acta biomaterialia》 |2018年第2018期|共11页
  • 作者单位

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    CNRS UMR6283 Institut des Molécules et Matériaux du Mans (IMMM) Université du Maine;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

    Inserm UMR 1229 RMeS Regenerative Medicine and Skeleton Université de Nantes ONIRIS;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Hydrogel; Cartilage; Biomaterial; Tissue Engineering;

    机译:水凝胶;软骨;生物材料;组织工程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号