首页> 外文期刊>Acta biomaterialia >Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour
【24h】

Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour

机译:基质诱导的菌株预致菌和矿化依赖性intervibrillar剪切转移使得生物盔甲中的3D纤维状变形使得

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The cuticle of stomatopod is an example of a natural mineralized biomaterial, consisting of chitin, amorphous calcium carbonate and protein components with a multiscale hierarchical structure, and forms a protective shell with high impact resistance. At the ultrastructural level, cuticle mechanical functionality is enabled by the nanoscale architecture, wherein chitin fibrils are in intimate association with enveloping mineral and proteins. However, the interactions between these ultrastructural building blocks, and their coupled response to applied load, remain unclear. Here, we elucidate these interactions via synchrotron microbeam wide-angle X-ray diffraction combined with in situ tensile loading, to quantify the chitin crystallite structure of native cuticle - and after demineralization and deproteinization - as well as time-resolved changes in chitin fibril strain on macroscopic loading. We demonstrate chitin crystallite stabilization by mineral, seen via a compressive pre-strain of approximately 0.10% (chitin/protein fibre pre-stress of similar to 20 MPa), which is lost on demineralization. Clear reductions of stiffness at the fibrillar-level following matrix digestion are linked to the change in the protein/matrix mechanical properties. Furthermore, both demineralization and deproteinization alter the 3D-pattern of deformation of the fibrillar network, with a non-symmetrical angular fibril strain induced by the chemical modifications, associated with loss of the load-transferring interfibrillar matrix. Our results demonstrate and quantify the critical role of interactions at the nanoscale (between chitin-protein and chitin-mineral) in enabling the molecular conformation and outstanding mechanical properties of cuticle, which will inform future design of hierarchical bioinspired composites.
机译:Sphatopod的角质层是天然矿化生物材料的一个例子,由几丁质,无定形碳酸钙和具有多尺度分层结构的蛋白质组分,形成具有高抗冲击性的保护壳。在超微结构水平下,纳米尺度结构使皮肤机械功能能够,其中甲壳素原纤维与包膜矿物质和蛋白质紧密相关。然而,这些超微结构构建块之间的相互作用以及它们对施加负荷的耦合响应仍然不明确。在这里,我们通过同步辐射宽角X射线衍射来阐明这些相互作用,与原位拉伸载荷相结合,以量化天然角质层的甲壳素微晶结构 - 以及脱矿质化和脱蛋白后 - 以及几丁质原纤维菌株的时间分辨变化关于宏观载荷。我们通过矿物质证明了几丁质微晶稳定,通过压缩预株约为0.10%(几丁质/蛋白纤维预胁迫类似于20MPa),这在脱矿质中丧失。在基质消化后,纤维状水平在纤维状水平下刚度的澄清与蛋白质/基质机械性能的变化有关。此外,脱矿质化和脱蛋白改变了纤维状网络的变形的3D模式,具有由化学修饰引起的非对称角纤维菌株,与负载转移的interfibrillar基质的损失相关。我们的结果证明并量化了纳米级(几丁质 - 蛋白质和丁香蛋白 - 矿物质)之间相互作用的关键作用,使Cuclics的分子构象和突出的机械性能能够提供通知分层生物悬浮复合材料的未来设计。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号