首页> 外文期刊>Computers & Fluids >Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions
【24h】

Semi-implicit method to solve compressible multiphase fluid flows without acoustic time step restrictions

机译:求解可压缩多相流体流动的半隐式方法,没有声学时间步长限制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new 3D multiphase numerical capability is presented here for simulating multiphase flow regimes at all Mach numbers (M). The new method is a semi-implicit extension of the finite volume discrete equation method (DEM) of Chinnaya et al. (2004), which originally used explicit time-stepping. The capability is also developed to work with another extension of the DEM to moving grids for arbitrary Lagrangian-Eularian (ALE) methods detailed in Dunn (2011). Rather than solving all phase equations simultaneously, the DEM reduces the equations to a system of single-phase Riemann solves, where each phase has its own velocity and thermodynamic state. Exchanges between the phases are modeled through source terms accounting for the phase interactions. Since the original multiphase scheme uses an explicit time-advancement scheme, it has time step restrictions dictated by the speed of sound, which limits the model's ability to simulate weakly compressible flows which typically need to be integrated for longer time periods. Here, we extend the current multiphase formulation by implementing a pressure-correcting step to enable implicit calculations and remove acoustic time step limitations. The new semi-implicit algorithm allows use of relatively large time steps compared to an explicit method. Validation and benefits of the new implicit time-step method are illustrated using several examples including weakly compressible flows and strong shock waves. The scheme presented here is general and may be used for a variety of applications which require capabilities for handling multiphase flow at a wide range of Mach numbers. However, the goal of this research is to simulate all stages of high energy explosions, including the shock formation (high Mach numbers) and evolution of the buoyant cloud (low Mach numbers). Published by Elsevier Ltd.
机译:这里提出了一种新的3D多相数值能力,用于在所有Mach数字(M)上模拟多相流动状态。新方法是Chinnaya等人的有限体积离散方程方法(DEM)的半隐式扩展。 (2004年),最初使用明确的时间踩踏。还开发了能力,以便与DEN的另一个延伸到DUNN(2011年)中详述的任意拉格朗日 - EURALIAN(ALE)方法的移动网格。该DEM而不是求解所有相位方程,而是将方程减少到单相Riemann解决的系统,其中每个相具有其自身的速度和热力学状态。阶段之间的交换通过源术语计算相互作用。由于原始的多相方案使用明确的时间提升方案,因此它具有由声音速度决定的时间步骤限制,这限制了模型模拟弱可压缩流的能力,这通常需要集成为更长的时间段。这里,我们通过实现压力校正步骤来扩展当前的多相配方,以实现隐式计算并去除声学时间步长限制。与显式方法相比,新的半隐式算法允许使用相对较大的时间步长。使用包括弱可压缩流和强冲击波的若干示例来说明新的隐式时间步骤方法的验证和益处。这里呈现的方案是一般的,可以用于各种应用,这些应用程序需要在各种机器数处处理多相流量的能力。然而,本研究的目标是模拟高能量爆炸的所有阶段,包括冲击形成(高马赫数)和浮力云的演变(低马赫数)。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号