首页> 外文期刊>Computers & Fluids >A 1D numerical model for the simulation of unsteady and highly erosive flows in rivers
【24h】

A 1D numerical model for the simulation of unsteady and highly erosive flows in rivers

机译:河流中不稳定和高腐蚀流动模拟的1D数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

This work is focused on a numerical finite volume scheme for the coupled shallow water-Exner system in 1D applications with arbitrary geometry. The mathematical expressions modeling the hydrodynamic and morphodynamic components of the physical phenomenon are treated to deal with cross-section shape variations and empirical solid discharge estimations. The resulting coupled equations can be rewritten as a non-conservative hyperbolic system with three moving waves and one stationary wave to account for the source terms discretization. Moreover, the wave celerities for the coupled morpho-hydrodyamical system depend on the erosion-deposition mechanism selected to update the channel cross-section profile. This influence is incorporated into the system solution by means of a new parameter related to the channel bottom variation celerity. Special interest is put to show that, even for the simplest solid transport models as the Grass law, to find a linearized Jacobian matrix of the system can be a challenge in presence of arbitrary shape channels. In this paper a numerical finite volume scheme is proposed, based on an augmented Roe solver, first order accurate in time and space, dealing with solid transport flux variations caused by the channel geometry changes. Channel cross-section variations lead to the appearance of a new solid flux source term which should be discretized properly. The stability region is controlled by wave celerities together with a proper reconstruction of the approximate local Riemann problem solution, enforcing positive values for the intermediate states of the conserved variables. Comparison of the numerical results for several analytical and experimental cases demonstrates the effectiveness, exact well-balancedness and accuracy of the scheme. (C) 2019 Elsevier Ltd. All rights reserved.
机译:该工作专注于具有任意几何的1D应用中耦合浅水灭虫系统的数值有限体系。建模了物理现象的流体动力学和形态学组分的数学表达处理以处理横截面形状变化和经验固体放电估计。得到的耦合方程可以作为非保守双曲线系统被重写,其中具有三个移动波和一个静止波来解释源术语离散化。此外,用于偶联的Morpho-Diveroficamical系统的波式冠状素取决于选择以更新通道横截面轮廓的侵蚀沉积机构。通过与信道底部变化圆形相关联的新参数并入到系统解决方案中。特别兴趣表明,即使对于最简单的固体运输模型作为草法,要找到一个线性化的雅可比矩阵,系统可以是在任意形状通道存在下的挑战。在本文中,基于增强的ROE求解器,在时间和空间中的第一顺序提出了数值有限体积方案,处理由沟道几何形状的变化引起的固体运输助焊剂变化。频道横截面变化导致外观新的固体磁通源术语,其应该被正确离散化。稳定区域由波通控制,以及对近似局部Riemann问题解决方案的适当重建,对保守变量的中间状态强制执行正值。几种分析和实验案例的数值结果的比较显示了该方案的有效性,精确的良好平衡和准确性。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号