...
首页> 外文期刊>Computers & Fluids >Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations
【24h】

Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations

机译:在多材料细胞中建立网状拓扑:实现鲁棒和精确的多材料模拟的技术

获取原文
获取原文并翻译 | 示例
           

摘要

Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian-Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstruction methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. We demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing. Published by Elsevier Ltd.
机译:现实世界的问题通常是多重材料,组合材料,诸如气体,液体和固体具有非常不同的性质。材料界面可以及时固定,或者可以是溶液的一部分,如流体结构相互作用或空气水动力学,从而移动和改变形状。在这些问题中,由于这些界面的复杂性,少量材料的存在,或者由于网格不会随着流动而导致的,所以计算网格可能是不适合的界面,或者由于在任意拉格朗日 - 欧拉(ALE)方法中。为了解决这些网格的兴趣问题,界面重建方法通常用于恢复细胞内材料区域的近似。对于交叉多重材料区域的细胞,所包含的子区域的这些近似可以被认为是我们呼叫最小的本地网格中的单材料子单元。在本文中,讨论了所产生的分层网格中的离散化方法的一些要求,并呈现一种方法,允许将充分详细的拓扑结构结合到基于PLIC型重建算法的嵌套解剖(例如, - 以有效且稳健的方式 - 氟,流体型力矩)。具体而言,我们描述了2D中的X-MOF接口重建算法,其扩展了流体矩(MOF)方法,包括在不同的网格实体之间的多层电池和父子关系中创建的最小值的拓扑。层次级别。 X-MOF保留了本地到电池的属性,不需要外部通信,这使其适用于大规模并行应用。我们展示了Tangram中的X-MOF实施的一些缩放结果,成为Exascale计算的现代界面重建框架。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号