首页> 外文期刊>Computers & Fluids >Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids
【24h】

Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids

机译:在非结构化网格上使用大型涡流模拟等温和加热的子射流噪声

获取原文
获取原文并翻译 | 示例
           

摘要

Jet noise remains the major contributor to airplane noise at take-off. In the past half-century of research, sound generation mechanisms in supersonic jets have been extensively characterized, while the sound sources in subsonic jets are still to be clearly identified. For the last two decades, Large Eddy Simulations (LES) have become a major tool for investigating jet noise sources due to their ability to capture detailed information in turbulent flows and their moderate cost that allows industrial applications. However, many challenges still arise when dealing with complex nozzle geometries and heating effects in the jet core. In this paper, subsonic jets with or without nozzle geometry at Mach number of 0.9 and moderately high Reynolds numbers ranging from 2 x 10(5) to 1 x 10(6) are computed using LES, providing a base of validation for different nozzle configurations and operating conditions. In this work, the high-order unstructured LES solver AVBP is combined with Ffowcs Williams and Hawkings' acoustic analogy on unstructured grids. The vortex pairing phenomenon is evidenced without properly triggering the turbulence in the jet at the nozzle exit. Hence, a non-geometrical tripping, where the firsts prism layers of the mesh at the nozzle wall are removed, is proposed and shown to be a successful method for triggering proper turbulence development in shear layers for the cases with nozzle. Moreover, it is more easily implemented because it does not require any geometrical modifications and it generates more natural turbulence than previous methods, leading the path to actual industrial dual-stream configurations. Both isothermal and heated jet flow cases are performed and validated with existing experimental data in terms of aerodynamics and acoustics, which demonstrates the capacity of an unstructured LES solver to correctly simulate both cold and heated jet noise phenomena. (C) 2018 Elsevier Ltd. All rights reserved.
机译:喷射噪声仍然是起飞时飞机噪音的主要贡献者。在过去的半个世纪的研究中,超声波喷射中的声音产生机制已经广泛表征,而亚音速喷射中的声源仍然可以清楚地识别。在过去的二十年中,由于能够在湍流流动中捕获详细信息以及允许工业应用的中等成本,大型涡流模拟(LES)已成为调查射流噪声源的主要工具。然而,在处理复杂的喷嘴几何形状和喷射芯中的加热效果时仍然出现许多挑战。在本文中,使用LES计算具有0.9的Mach数量的Mach数和中间高雷诺数的亚音速喷射器,或者不含2×10(5)至1×10(6),为不同喷嘴配置提供验证基础和操作条件。在这项工作中,高阶非结构化LES Solver Avbp与FFOWCS威廉姆斯和Hawkings的声音类比联合在非结构化网格上。在没有适当地触发喷嘴出口处的射流中的湍流的情况下证明了涡旋配对现象。因此,提出了一种非几何跳闸,其中喷嘴壁在喷嘴壁处的网格的第一棱镜层被移除,并且被证明是用于用喷嘴的剪切层触发适当的湍流开发的成功方法。此外,它更容易实现,因为它不需要任何几何修改,并且它产生比以前的方法更自然的湍流,导致实际工业双流配置的路径。在空气动力学和声学方面进行等温和加热的喷射流程和验证并验证了现有的实验数据,这证明了非结构化LES求解器正确模拟冷热射流噪声现象的能力。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号