...
首页> 外文期刊>Computers & Fluids >Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method
【24h】

Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method

机译:通过使用冠层应力法通过周期性障碍的流量叠加的大型涡流模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Large-eddy simulation (LES) of a turbulent flow through an array of building-like obstacles is an idealized model to study transport of contaminants in the urban atmospheric boundary layer (urban ABL). A reasonably accurate LES prediction of turbulence in such an urban ABL must resolve a significant proportion of the small but energetic eddies in the roughness sublayer, which remains prohibitive even though computational power has been increased significantly. Recently, some researchers also reported a high level of inaccuracy in turbulence prediction if LES were coupled with an adaptive mesh refinement technique in order to optimize the cost of resolving the roughness sublayer. In this article, we present a turbulence closure methodology for LES of urban ABLs in which the roughness elements are represented through the canopy stress method, and the subgrid scale stress is modeled through a dynamically adaptive eddy viscosity method. Unlike the classical Smagorinsky model that considers only the 'strain portion' of the velocity gradient tensor, we consider both the 'strain tensor' and the 'rotation tensor' to compute the eddy viscosity. This allows us to dynamically adapt the rate of energy dissipation to the scale of the energetic eddies in the roughness sublayer. Without employing a mesh conforming to the urban roughness elements, the effect of such solid bodies are represented in the LES model through a canopy stress method in which the loss of pressure and the sink of momentum due to the interaction between eddies and roughness elements are parameterized using the instantaneous velocity field. Simulation results of the proposed canopy stress method is compared with that of a conventional Computational Fluid Dynamics (CFD) method employing a block-structured mesh conforming around the roughness elements. For urban flow simulations, the results demonstrate that the proposed canopy stress model is accurate in predicting vertical profiles of mean and variance, as well as the temporal intermittency of coherent structures. (C) 2018 Elsevier Ltd. All rights reserved.
机译:通过建筑物样障碍阵列的大涡流(LES)是一种理想化的模型,用于研究城市大气边界层(城市ABL)的污染物运输。在这种城市ABL中的一种合理准确的湍流预测必须解决粗糙化子层中的小但能量漩涡的大量比例,即使计算能力显着增加。最近,一些研究人员还报告了湍流预测中的高度不准确,如果LES与自适应网格细化技术耦合,以便优化解决粗糙度子层的成本。在本文中,我们介绍了一种湍流封闭方法,用于LES的城市ABLS,其中粗糙度元件通过冠层应力方法表示,并且通过动态自适应涡流法模拟底图垢应力。与仅考虑速度梯度张量的“应变部分”的经典Smagorinsky模型不同,我们考虑“应变张量”和“旋转张量”来计算涡粘度。这使我们能够将能量耗散的能量耗散速度调整到粗糙化子层中的能量漩涡的规模。在不采用符合城市粗糙度元素的网状物的情况下,通过冠层应力方法在LES模型中表示这种固体的效果,其中由于漩涡和粗糙度元素之间的相互作用而导致的压力和势头的下沉的损失是参数化的使用瞬时速度场。所提出的冠层应力法的仿真结果与采用围绕粗糙度元件围绕粗糙度元件的块结构网格的传统计算流体动力学(CFD)方法进行了比较。对于城市流动模拟,结果表明,所提出的天窗应力模型在预测平均值和方差的垂直轮廓以及相干结构的时间间间隔方面是准确的。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号