首页> 外文期刊>Computers & Fluids >Propulsive efficiency in drag-based locomotion of a reduced-size swimmer with various types of appendages
【24h】

Propulsive efficiency in drag-based locomotion of a reduced-size swimmer with various types of appendages

机译:具有各种类型的阑尾的减尺的游泳运动员的拖累运动效率的推进效率

获取原文
获取原文并翻译 | 示例
           

摘要

The propulsive efficiencies of multi-functional appendage configurations in a small drag-based swimmer are investigated computationally. Due to the lack of actual actuators to measure input power, efficiency is evaluated indirectly and may be instinctively associated to higher production of forward thrust. However, the relation is not intuitively self-evident, since the shape of the propulsive system is known to influence the generation of hydrodynamic forces, along with the particular kinematics used, which in turn affect the power consumption. The current article investigates this topic in the case of a reduced-size appendage-based swimmer producing small values of thrust, and discusses the role of design in the relation between propulsive efficiency and thrust production under a "sculling" kinematic motion profile. The study implements seven different shapes of appendages, inspired by both the biology and engineering, which perform a drag-based swimming pattern while being attached, in pairs, at the dorsal side of a common body. The work utilises an immersed boundary approach to solve numerically the fluid equations and capture the flow patterns around the swimmer. The results contribute to our understanding of drag-based propulsive systems and may influence the development of novel underwater robotic systems and limb prosthetic devices for underwater rehabilitation. (C)2018 Elsevier Ltd. All rights reserved.
机译:计算地调查了小型拖拉游泳器中多功能阑尾配置的推进效率。由于缺少实际执行器来测量输入功率,间接评估效率,可以本能地与更高的向前推力产生的相关。然而,该关系是不直观的不言而喻的,因为已知推进系统的形状来影响流动力的产生,以及所使用的特定运动学,这反过来影响功耗。目前的文章在制作少量推力的游泳者的情况下调查了这一主题,并探讨了设计在“桨脚下”运动型材下的推进效率与推力生产之间的关系。该研究实现了七种不同形状的附属物,灵感来自生物学和工程,它在持续的拖拉的游泳模式成对地在共同体的背侧进行。该工作利用浸入的边界方法来解决数字上的流体方程并捕获游泳运动员周围的流动模式。结果有助于我们对基于拖拉的推进系统的理解,并可能影响新型水下机器人系统和水下康复的肢体假体装置的发展。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号