...
首页> 外文期刊>Journal of Fluid Mechanics >Collective locomotion of two-dimensional lattices of flapping plates. Part 2. Lattice flows and propulsive efficiency
【24h】

Collective locomotion of two-dimensional lattices of flapping plates. Part 2. Lattice flows and propulsive efficiency

机译:拍打板二维格子的集体运动。 第2.晶格流动和推进效率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We study propulsion of rectangular and rhombic lattices of flapping plates at O(10-100) Reynolds numbers in incompressible flow. The fluid dynamics often converges to time periodic in 5-30 flapping periods, facilitating accurate computations of time-averaged thrust force and input power. We classify the propulsive performances of the lattices and the periodicities of the flows with respect to flapping amplitude and frequency, horizontal and vertical spacings between plates, and oncoming flow velocity. Non-periodic states are most common at small streamwise spacing, large lateral spacing and large Reynolds number. Lattices that are closely spaced in the streamwise direction produce intense vortex dipoles between adjacent plates. The flows transition sharply from drag-to thrust-producing as these dipoles switch from upstream to downstream orientations at critical flow speeds. Near these transitions the flows pass through a variety of periodic and non-periodic states, with and without up-down symmetry, and multiple stable self-propelled speeds can occur. As the streamwise spacing increases (and with large lateral spacing), the plates may shed vortex streets that impinge on downstream neighbours. The most efficient streamwise spacing increases with flapping amplitude. With small lateral spacing, the rectangular lattices have Poiseuille-type flows that yield net drag, while the rhombic lattices may shed vortices and generate net thrust, sometimes with relatively high efficiency. As lateral spacing increases to one plate length and beyond, the rectangular lattices begin to shed vortices and generate thrust, eventually with efficiencies similar to the rhombic lattices', as the two types of flows converge. At Re = 70, the lattices' maximum Froude efficiencies are approximately twice those of an isolated plate (only considering nearly periodic lattice flows). As Re decreases, the lattices' efficiency advantage increases further.
机译:我们研究了不可压缩流动中,在O(10-100)雷诺数下扑翼板的矩形和菱形网格的推进力。流体动力学通常会在5-30个扑翼周期内收敛到时间周期,便于精确计算时间平均推力和输入功率。我们根据扑动振幅和频率、板之间的水平和垂直间距以及迎面而来的流速,对网格的推进性能和流动的周期性进行了分类。非周期状态在较小的流向间距、较大的横向间距和较大的雷诺数下最为常见。在流向上紧密间隔的晶格在相邻板块之间产生强烈的涡旋偶极子。当这些偶极子在临界流速下从上游方向切换到下游方向时,气流从阻力急剧转变为推力。在这些转变附近,气流通过各种周期性和非周期性状态,有上下对称性和无上下对称性,并且可能出现多个稳定的自推进速度。随着流向间距的增加(且横向间距较大),板块可能会脱落涡街,影响下游邻居。最有效的流向间距随着扑动幅度的增加而增加。在较小的横向间距下,矩形格子具有产生净阻力的Poiseuille型流动,而菱形格子可能会脱落漩涡并产生净推力,有时效率相对较高。当横向间距增加到一个板长或更长时,矩形网格开始脱落漩涡并产生推力,最终随着两种流动的收敛,其效率与菱形网格相似。在Re=70时,晶格的最大弗劳德效率约为隔离板的两倍(仅考虑近周期晶格流)。随着Re的减少,晶格的效率优势进一步增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号