...
首页> 外文期刊>Computers & Fluids >Large eddy simulations of unsteady flows over a stationary airfoil
【24h】

Large eddy simulations of unsteady flows over a stationary airfoil

机译:在固定式翼型上的不稳定流量的大涡流模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highlights?Airfoil flows with oscillating freestream are computed with large eddy simulation.?Harmonically varying flows delay mean separation and advances mean reattachment.?Oscillating freestream speed suppresses fluctuation of some velocity components.?Computed airfoil forces are compared to predictions by inviscid theories.AbstractTwo groups of unsteady flows over a stationary SD7003 airfoil are studied with the large eddy simulation method. In the first group, the angle of attack (AoA) is fixed, while the freestream velocity magnitude varies harmonically with various frequencies and amplitudes. In the second group, the freestream velocity magnitude is fixed but its direction, therefore the AoA varies harmonically. Over the range of parameters considered in this study the mean lift and drag coefficients of the unsteady flows with oscillating freestream velocity magnitude are found to be nearly the same as those calculated for steady flows. However, there are significant phase shifts between the aerodynamic forces and the unsteady freestream velocity. The phase shift for drag force is larger than that for lift force, even though both increase as the frequency of freestream velocity oscillations increases. Furthermore, the computed lift amplitudes are found to be noticeably higher than those predicted by Greenberg's inviscid theory, while the lift phase shifts are in better agreement with the theory. For flows with oscillating freestream AoA, there is little change in the mean lift, while the mean drag is reduced by oscillations in AoA due to Katzmayr effect. As the frequency of oscillations in AoA increases, the phase shift for lift increases while that for drag decreases. Our results also indicate that the mean separation point moves downstream and the mean reattachment point moves upstream when the freestream velocity magnitude or the freestream flow direction oscillates with respect to the airfoil.]]>
机译:<![cdata [ 突出显示 使用大涡流模拟计算翼型的翼型流量。 谐波变化的流动延迟平均分离和前进意味着重新附着。 摆动自由流速抑制了一些速度分量的波动。 计算翼型的力量与Inciscid理论的预测进行比较。 Abstract 通过大涡仿真方法研究了两组静止的SD7003翼型的不稳定流量。在第一组中,攻击角度(AOA)是固定的,而自由流速度幅度随各种频率和幅度而变化。在第二组中,自由流速度幅度是固定的,而是其方向,因此AOA和谐地变化。在本研究中考虑的参数范围内,不稳定流动的平均升力和拖动系数具有振荡的自由流速度幅度,与稳定流动计算的那些几乎相同。然而,在空气动力和不稳定的自由流速度之间存在显着的相移。拖曳力的相移大于提升力,即使随着FreeStream速度振荡的频率增加而增加,也可以增加。此外,发现计算的升力幅度明显高于由格林伯格的不合理理论预测的升力,而电梯相移与该理论更好。对于具有振荡的FreeStream AOA的流动,平均升力几乎没有变化,而由于Katzmayr效应,通过AOA中的振荡减少了平均阻力。随着AOA中的振荡频率的增加,升力的相移增加,而升力的升力降低。我们的结果还表明,平均分离点在下游移动,平均重新连接点在自由流速度幅度或自由流动方向相对于翼型上振荡时移动。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号