首页> 外文期刊>Computers & Fluids >Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation
【24h】

Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation

机译:用隐式大涡模拟初始化的高雷诺数的不可压缩湍流边界层和平面喷射的直接数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A direct numerical simulation (DNS) initialized with an implicit large eddy simulation (ILES) is performed for temporally evolving planar jets and turbulent boundary layers. In the ILES, an initial laminar flow develops into a fully developed state of the planar jet or the boundary layer. Subsequently, the DNS is started from the flow field obtained by the ILES. This hybrid ILES/DNS methodology is tested for the planar jet and boundary layer by comparing the results with full DNS started from the initial laminar flow. The ILES results used as the initial conditions of the DNS do not possess small-scale fluctuations. However, the small-scale fluctuations in the DNS grow with time and develop well within an interval of the integral time scale, where the influences of initial conditions taken from the ILES disappear for an energy spectrum of velocity fluctuations. The DNS initialized with the ILES well reproduces small-scale characteristics of turbulence, such as Reynolds number dependence of skewness and flatness of velocity derivative and energy spectrum of velocity fluctuations in the inertial subrange and viscous range. The DNS initialized with the ILES predicts well statistics dominated by large scales, such as 1st- and 2nd-order statistics and longitudinal auto-correlation function, in agreement with previous experimental and numerical studies. Reynolds number dependence of the mean velocity, root-mean-squared velocity fluctuations, Reynolds stress, shape factor, and skin friction in the turbulent boundary layers in the present DNS are consistent with previous experimental studies. These investigations confirm advantages of applying the ILES at the transitional flow region in the DNS of turbulent shear flows at high Reynolds numbers. (C) 2019 Elsevier Ltd. All rights reserved.
机译:用隐式大涡模拟(ILE)初始化的直接数值模拟(DNS)用于时间上不断地发展平面喷射和湍流边界层。在I iles中,初始层流动发展成平面射流或边界层的完全发育状态。随后,从ILE获得的流场开始DNS。通过将具有从初始层流程开始的完整DNS比较来测试该混合ILE / DNS方法,用于平面射流和边界层。用作DNS初始条件的ILE结果不具有小规模波动。然而,DNS中的小规模波动随时间增长并且在积分时间尺度的间隔内产生良好,其中从IILE取出的初始条件的影响消失了速度波动的能谱。用I岩初始化的DNS良好地再现湍流的小规模特征,例如诸如惯性子法兰和粘性范围内的速度衍生速度衍生的偏移和速度衍生的平坦度的雷诺数依赖性和速度波动的节能。初始化与IILE初始化的DNS预测大规模的井统计,例如第一和二阶统计和纵向自动相关函数,同时与先前的实验和数值研究。雷诺数依赖于本DNS中湍流边界层中的平均速度,根均匀平方速度波动,雷诺应力,形状因子和皮肤摩擦与先前的实验研究一致。这些研究确认了在高雷诺数的湍流剪切流量的DNS中施加过渡流程区域的优点。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号