...
首页> 外文期刊>Computational Materials Science >Anisotropy of plasticity and structural transformations under uniaxial tension of iron crystallites
【24h】

Anisotropy of plasticity and structural transformations under uniaxial tension of iron crystallites

机译:铁微晶单轴张力下的可塑性和结构变换的各向异性

获取原文
获取原文并翻译 | 示例

摘要

Molecular dynamics simulation has been performed to investigate the onset and evolution of plasticity in nanosized bcc iron crystallites with different crystallographic orientation under uniaxial tension. Calculations have shown that the onset of plasticity in the iron crystallite is associated with the nucleation of either dislocations or twins. These defects nucleate and grow as a result of structural transformations that locally change the lattice type. In stretching along the [11 (2) over bar] direction, plastic deformation begins mainly due to the formation and growth of a single twin, at the front of which the bcc - fcc - bcc transformation occurs. Dislocations nucleate in the interior of the twin as the twin grows. In stretching along the [1 (1) over bar0] direction, plasticity results from the formation of a large number of twins in the crystallite. Regions with fcc and hcp lattice structure arise at the front of these twins. With tensile strain increase, the contribution of twinning to the crystallite accommodation decreases because twins transform into dislocations. The onset of plasticity in the sample stretched along the [1 1 1] direction has a pronounced dislocation character. New dislocations appear at existing dislocations through the formation of regions with fcc lattice. A large part of the dislocations escape to the free surfaces during stretching, leaving the crystallite with a cellular dislocation structure and a large number of vacancies. Tension both in the elastic region and above the yield point causes local bcc - fcc - bcc transformations in the crystallite. They always occur in regions with increased stresses. The formation of single fcc atoms in the elastic stretching region is of thermal fluctuation nature, and their average lifetime is one atomic vibration period. The lifetime of the fcc atoms at the twin front is determined by the front propagation rate and is about 5 atomic vibration periods.
机译:已经进行了分子动力学模拟,以研究单轴张力下具有不同结晶取向的纳米BCC铁晶晶体中可塑性的起初和演变。计算表明,铁晶体中的可塑性发作与脱位或双胞胎的成核相关。这些缺陷核心成核,由于局部改变晶格类型的结构变换而生长。在拉伸[11(2)上方的条纹方向上,塑性变形主要是由于单次双胞胎的形成和生长,在BCC - & FCC - >发生了BCC转换。随着双胞胎的增长,脱位在双胞胎的内部成核。在沿[1(1)上方的条纹方向拉伸,可塑性由在​​微晶中形成大量双胞胎的形成。带有FCC和HCP格子结构的地区在这些双胞胎的前面产生。随着拉伸应变的增加,孪生对微晶容纳的贡献减少,因为双胞胎转化为位错。沿[111]方向拉伸的样品中的可塑性发作具有明显的位错。通过使用FCC格子的地区形成现有的脱位,在现有的脱位上出现。在拉伸期间,脱位的大部分脱位逸出到自由表面,使微晶脱位结构和大量空位。在弹性地区和高于屈服点的张力导致局部BCC - & FCC - >晶体中的BCC转换。它们总是发生在具有增加的压力增加的地区。弹性拉伸区域中的单个FCC原子的形成是热波动性质,并且它们的平均寿命是一个原子振动周期。双前沿的FCC原子的寿命通过前传播速率确定,并且是大约5个原子振动周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号