...
首页> 外文期刊>Computational Materials Science >The effect of grain-size on fracture of polycrystalline silicon carbide: A multiscale analysis using a molecular dynamics-peridynamics framework
【24h】

The effect of grain-size on fracture of polycrystalline silicon carbide: A multiscale analysis using a molecular dynamics-peridynamics framework

机译:晶粒大小对多晶硅碳化硅骨折的影响:使用分子动力学 - 智典框架的多尺度分析

获取原文
获取原文并翻译 | 示例
           

摘要

A robust atomistic to mesoscale computational multiscale/multiphysics modeling framework that explicitly takes into account atomic-scale descriptions of grain-boundaries, is implemented to examine the interplay between grain-size and fracture of polycrystalline cubic silicon carbide (3C-SiC). A salient feature of the developed framework is the establishment of scale-parity between the chosen atomistic and the mesoscale methods namely molecular dynamics (MD) and peridynamics (PD) respectively, which enables the ability to model the effect of the underlying microstructure as well as obtain relevant new insights into the role of grain-size on the ensuing mechanical response of 3C-SiC. Material properties such as elastic modulus, and fracture toughness of single crystals and bicrystals of various orientations are obtained from MD simulations, and using appropriate statistical analysis, MD derived properties are interfaced with PD simulations, resulting in mesoscale simulations that accurately predict the role of grain-size on failure strength, fracture energy, elastic modulus, fracture toughness, and tensile toughness of polycrystalline 3C-SiC. In particular, it is seen that the fracture strength follows a Hall-Petch law with respect to grain-size variations, while mode-I fracture toughness increases with increasing grain-size, consistent with available literature on brittle fracture of polycrystalline materials. Equally importantly, the developed MD-PD multiscale/multiphysics framework represents an important step towards developing materials modeling paradigms that can provide a comprehensive and predictive description of the microstructureproperty-performance interplay in solid-state materials.
机译:实施明确地考虑了晶界原子级描述的Mescale计算多尺度/多体模型建模框架的鲁棒原子,以检查多晶立方碳化硅(3C-SiC)的晶粒尺寸和骨折之间的相互作用。发达框架的突出特征是在所选原子和Mescrate方法之间建立比例,即分子动力学(MD)和白颌动态(PD),这使得能够模拟底层微结构的效果以及在3C-SIC随后的机械响应上获得相关的新见解。材料性质如弹性模量和各种取向的单晶的断裂韧性,并从MD模拟获得,并且使用适当的统计分析,MD衍生性能与PD仿真接口,导致Messcale模拟准确预测谷物的作用 - 对多晶3C-SiC的失效强度,断裂能量,弹性模量,断裂韧性和拉伸韧性。特别地,可以看出,裂缝强度遵循毂 - PACH法相对于晶粒尺寸变化,而模式-I裂缝韧性随着晶粒尺寸的增加而增加,与多晶材料的脆性骨折上的可用文献一致。同样重要的是,发达的MD-PD多尺度/多体框架代表了朝向开发材料建模范式的重要步骤,该级数可以提供固态材料中微观结构的性能相互作用的全面和预测的描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号