...
首页> 外文期刊>Biomacromolecules >Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions
【24h】

Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions

机译:通过微调分子相互作用设计肽/石墨烯杂交水凝胶

获取原文
获取原文并翻译 | 示例

摘要

A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofibers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling beta-sheet-forming, self assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and pi-pi in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications.
机译:最近出现了越来越多的水凝胶的设计的策略是纳米纤维的掺入,以利用它们的特定性质来修改水凝胶或添加功能的性能。特别是碳纳米材料的出现特别为在生物医学应用中使用石墨烯衍生物(GDS)提供了极大的机会。设计混合材料时的关键挑战是了解基质(肽纳米纤维)和纳米填充物(此处GDS)之间的分子相互作用以及这些影响这些原料的最终性质。为此作品的目的,选择三种胶凝β-片状,具有不同的物理化学性质和五个GDS具有不同表面化学物质的三种GDS的肽,以制备新的杂交水凝胶。首先表征肽水凝胶和GDS;随后,探测肽纳米纤维和GDS之间的分子相互作用在配制和机械表征杂合水凝胶之前。我们展示了静电相互作用之间的相互作用如何具有吸引力或排斥,疏水(和含苯丙氨酸肽的肽)相互作用的疏水性(和PI-PI),其总是具有吸引力,在杂种水凝胶的最终性质上起关键作用。氢化物水凝胶的剪切模量显示出与薄片的纤维粘附强度有关,肽的整体疏水性以及形成的纤维状网络的类型。最后,还通过在14天内通过包封和培养人的Mesemchymal干细胞(HMSC)来研究在pH6处形成的杂种水凝胶的细胞毒性。这项工作清楚地表明了肽和GDS之间的相互作用如何用于定制所得水凝胶的机械性能,从而使GD纳米填充物以受控的方式掺入并打开利用其固有性质以设计生物医学的新型杂种肽水凝胶的可能性。应用程序。

著录项

  • 来源
    《Biomacromolecules 》 |2018年第7期| 共11页
  • 作者单位

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Fac Biol Med &

    Hlth Div Cell Matrix Biol &

    Regenerat Med Manchester M13 9PL Lancs England;

    UK Asylum Res Halifax Rd High Wycombe HP12 3SE Bucks England;

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Fac Biol Med &

    Hlth Div Cell Matrix Biol &

    Regenerat Med Manchester M13 9PL Lancs England;

    Univ Manchester Manchester Inst Biotechnol Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

    Univ Manchester Sch Mat Oxford Rd Manchester M13 9PL Lancs England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号