...
首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties
【24h】

Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties

机译:修饰蒙脱石Zeta电位,实现高活性药物成分纳米颗粒加载和稳定性,具有最佳溶解性能

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles (NPs) of three poorly water-soluble BCS class II active pharmaceutical ingredients (APIs) (clozapine (CLO), curcumin (CUR) and carbamazepine (CBMZ) with zeta potentials -28.5 +/- 2.5, -33 +/- 1.5 and -13 +/- 1.5 mV respectively) were produced, stabilized and isolated into the solid state with the help of Montmorillonite (MMT) clay carrier particles. The nanoparticles of clozapine (27 nm), curcumin (170 nm) and carbamazepine (30 nm) were produced and stabilized in suspension using a reverse antisolvent precipitation technique in the presence of `as received' MMT carrier particles (similar to 30 mu m) and/or MMT carrier particles whose surface had been slightly modified with a cationic protein, protamine sulphate salt (PA). The resulting nano-particle carrier composites were isolated directly from suspension into a solid state form by simple filtration followed by air-drying. The API dissolution rates from these dried NP-carrier composites were comparable with those of the respective stabilized API nanoparticles in suspension up to maximum CLO, CUR and CBMZ loadings of 23%, 21.8% and 33.3% (w/w) respectively, although surface modification of the MMT carrier particles with PA was needed for the CLO and CUR NP-carrier composites in order to preserve the fast API nanosuspension-like dissolution rates at higher API loadings. For both of these APIs, the optimal loading of PA on MMT was around 4 mg/g, which likely helped to limit aggregation of the API nanoparticles at the higher API loadings. Interestingly, no MMT surface modification was needed to preserve fast API dissolution rates at higher API loadings in the case of the CBMZ NP-carrier composites. This discrimination among the three APIs for carrier particle surface modification was previously observed in reported studies by our group for three other APIs, namely valsartan, fenofibrate and dalcetrapib. When examined together, the data for all six APIs suggest a general trend whereby API nanoparticles with zeta potentials more positive than around -25 mV do not require carrier particle surface modification with PA in order to preserve their fast dissolution rates from NP-carrier composites at higher API loadings. Thus, this study offers a potentially effective means of transforming poorly water soluble BCS Class II APIs into fast dissolving solid dosage NP-carrier composites, whereby the surface properties of the carrier particle can be tuned with prior knowledge of the zeta potential of the API nanoparticles.
机译:三种不良水溶性BCS II类活性药物成分(API)(柠檬嘧啶(CLO),姜黄素(CLO)和氨基甲酰胺(CBMZ)的纳米颗粒(NPS),具有Zeta电位-28.5 +/- 2.5,-33 +/- 1.5在蒙脱石(MMT)粘土载体颗粒的帮助下,分别产生,稳定和分离固态,稳定和分离为-13 +/- 1.5mV。在存在“接受”MMT载体颗粒(类似于30μm)的情况下,使用反向抗溶解的沉淀技术在悬浮液中产生并稳定氯氮平(270nm),姜黄素(170nm)和尿嘧啶素(30nm)的纳米颗粒(类似于30μm)和/或MMT载体颗粒用阳离子蛋白质略微修饰,Protamine硫酸盐盐(PA)。通过简单的过滤直接从悬浮液中分离所得纳米颗粒载体复合材料,然后通过空气干燥方式分离成固态形式。这些干燥的NP载体复合材料的API溶解率与分别的相应稳定化API纳米颗粒的溶液分别与23%,21.8%和33.3%(W / W)的最大溶液,Cur和CBMZ载量相媲美,尽管表面CLO和CLO和CUP-载体复合材料需要使用PA的MMT载体颗粒的修饰,以便在较高的API载荷处保持快速API纳米悬念样溶解速率。对于这两种API,PA ON MMT的最佳负载约为4mg / g,这可能有助于限制在较高API载荷处的API纳米颗粒的聚集。有趣的是,在CBMZ NP载体复合材料的情况下,不需要在较高API载荷处保持快速API溶解速率的MMT表面改性。在我们的三个其他API,即Valsartan,Fenofibrate和Dalcetrapia的情况下,先前观察到载体颗粒表面改性的三个APIS中的这种歧视。当一起检查时,所有六个API的数据都表明了一般趋势,其中具有比约-25mV的ζ电位更积极的API纳米颗粒不需要具有PA的载体颗粒表面改性,以便从NP载体复合材料处保持它们的快速溶解速率更高的API负载。因此,该研究提供了将水溶性BCS II API的潜在有效的方法转化为快速溶解的固体剂量NP载体复合材料,从而可以通过先验知识来调用载体颗粒的表面性质,以先验知识的API纳米颗粒的Zeta电位。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号