首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >Load-dependent contact mechanics of particulate assemblies: Multi-variant particle size, shape and surface roughness in advanced materials and process applications
【24h】

Load-dependent contact mechanics of particulate assemblies: Multi-variant particle size, shape and surface roughness in advanced materials and process applications

机译:颗粒式组件的载荷依赖性接触机械机械:先进材料和工艺应用中的多变体粒度,形状和表面粗糙度

获取原文
获取原文并翻译 | 示例
       

摘要

Many of the industrial manufacturing processes of particulate materials are presently modeled using Discrete Element Models (DEM), and in some instances hybrid multi-phase models combining DEM with CFD and other hydrodynamic variants, see and Mehta (2007). The early tribology work in 80s and 90s on load-dependent particle contact mechanics for use in computational algorithms relied on considerations of single-point contacts between smooth elastic and rigid-plastic spheres and curvilinear surface contacts between cylindrical shapes; see . Later developments included multiple-asperity surface contacts and elastic/plastic surface interactions as well as contact angle variations; see Tuzun and Walton (1992), Tuzun et al. (2004) and Smith and Tuzun (2002a) that include many other references. In this paper, the established theoretical framework is reviewed first for calculating bulk assembly stresses and bulk shear patterns from single-particle contact mechanics highlighting the importance of the particle shape, size and surface roughness. Subsequently, illustrations are provided of the effects of relaxing the assumptions of mono-disperse particle size and shape on the bulk shear patterns observed during slow-shearing, packed assembly flows as seen in chutes and hoppers and in particle heaps respectively. Finally, an analogy is provided between the studies of the deformation response of material composites comprising of particles embedded within a matrix structure to sustained stress-loading and unloading cycles; see Hull and Clyne (2017) and those observed in flowing particle assemblies under compression and shear. Such an analogy can be particularly useful in predicting the flow behaviour of particles “tailor-made” for advanced functionality commonly encountered in applications as widely ranging as multi-phase catalytic reactors and separators, drug manufacture, renewable energy production and storage and in chemical and physical abatement of harmful environmental emissions.
机译:颗粒材料的许多工业制造过程现在使用离散元件模型(DEM)进行了模拟,并且在一些情况下,混合多相模型与CFD和其他流体动力学变体组合,见和Mehta(2007)。在80年代和90年代的早期摩擦学工作在载荷依赖性粒子接触机械上工作,用于计算算法,依靠光滑的弹性和刚性球体之间的单点触点和圆柱形之间的曲线表面触点的考虑;看 。后来的开发包括多粗糙表面触点和弹性/塑料表面相互作用以及接触角变化;查看Tuzun等人,Tuzun等人(1992)。 (2004)和史密斯和图恩(2002A),包括许多其他参考文献。在本文中,首先审查了所建立的理论框架,用于计算来自单粒子接触机械的散装组件应力和散装剪切图案,突出了颗粒形状,尺寸和表面粗糙度的重要性。随后,提供了在慢速剪切期间观察到的单分散粒度和形状的效果的效果,分别在滑槽和料斗中看到的慢速剪切和料斗和颗粒堆中观察到的散装剪切图案的效果。最后,在材料复合材料的变形响应的研究之间提供了一种类比,该材料复合材料的变形响应包括嵌入基质结构内的颗粒以持续的应力加载和卸载循环;看到船体和克莱恩(2017)和在压缩和剪切下的流动粒子组件中观察的那些。这种类比可以特别有用于预测用于在应用中通常遇到的高级功能的颗粒“量身定制”的流动行为,以广泛地为多相催化反应器和分离器,药物制造,可再生能源生产和储存以及化学品和化学品有害环境排放的物理消除。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号