...
首页> 外文期刊>Cerebral cortex >Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output
【24h】

Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output

机译:皮质神经发生的数学建模揭示了创始人群体不一定与神经源性输出量规模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mammalian cerebral neocortex has a unique structure, composed of layers of different neuron types, interconnected in a stereotyped fashion. While the overall developmental program seems to be conserved, there are divergent developmental factors generating cortical diversity amongst species. In terms of cortical neuronal numbers, some of the determining factors are the size of the founder population, the duration of cortical neurogenesis, the proportion of different progenitor types, and the fine-tuned balance between self-renewing and differentiative divisions. We develop a mathematical model of neurogenesis that, accounting for these factors, aims at explaining the high diversity in neuronal numbers found across species. By framing our hypotheses in rigorous mathematical terms, we are able to identify paths of neurogenesis that match experimentally observed patterns in mouse, macaque and human. Additionally, we use our model to identify key parameters that would particularly benefit from accurate experimental investigation. We find that the timing of a switch in favor of symmetric neurogenic divisions produces the highest variation in cortical neuronal numbers. Surprisingly, assuming similar cell cycle lengths in primate progenitors, the increase in cortical neuronal numbers does not reflect a larger size of founder population, a prediction that has identified a specific need for experimental quantifications.
机译:哺乳动物脑新皮质具有独特的结构,由不同的神经元类型的层组成,以典型的方式互连。虽然整体发展方案似乎是节省的,但在物种中产生皮质多样性的发育导航因素。在皮质神经元数方面,一些确定因素是创始人群体的大小,皮质神经发生的持续时间,不同祖语类型的比例,以及自我更新和不同分区之间的微调平衡。我们开发了神经发生的数学模型,占这些因素的核算,旨在解释跨物种发现的神经元数的高多样性。通过以严格的数学术语构成我们的假设,我们能够识别神经发生的路径,以匹配小鼠,猕猴和人类的实验观察模式。此外,我们使用我们的模型来识别从准确的实验调查中特别受益的关键参数。我们发现,有利于对称神经源性划分的转换的时序产生了皮质神经元数的最高变化。令人惊讶的是,假设灵长类动物祖细胞中类似的细胞周期长度,皮质神经元数的增加不反映更大的创始人群体,该预测已经确定了实验量化的特异性需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号