首页> 外文期刊>Catalysis Today >Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments
【24h】

Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments

机译:在第一原理微酮模拟和实验中了解甲醇和二甲醚的沸石催化的苯甲基化反应

获取原文
获取原文并翻译 | 示例
           

摘要

In methanol-to-hydrocarbon chemistry, methanol and dimethyl ether (DME) can act as methylating agents. Therefore, we focus on the different reactivity of methanol and DME towards benzene methylation in H-ZSM-5 at operating conditions by combining first principles microkinetic modeling and experiments. Methylation reactions are known to follow either a concerted reaction path or a stepwise mechanism going through a framework-bound methoxide. By constructing a DFT based microkinetic model including the concerted and stepwise reactions, product formation rates can be calculated at conditions that closely mimic the experimentally applied conditions. Trends in measured rates are relatively well reproduced by our DFT based microkinetic model. We find that benzene methylation with DME is faster than with methanol but the difference decreases with increasing temperature. At low temperatures, the concerted mechanism dominates, however at higher temperatures and low pressures the mechanism shifts to the stepwise pathway. This transition occurs at lower temperatures for methanol than for DME, resulting in smaller reactivity differences between methanol and DME at high temperature. Our theory-experiment approach shows that the widely assumed rate law with zeroth and first order in oxygenate and hydrocarbon partial pressure is not generally applicable and depends on the applied temperature, pressure and feed composition.
机译:在甲醇 - 烃化学中,甲醇和二甲醚(DME)可以作为甲基化试剂。因此,通过组合首先原理的微蓄电图和实验,我们专注于在操作条件下在H-ZSM-5中对甲醇和DME对苯甲酯的不同反应性。已知甲基化反应遵循齐全的反应路径或通过框架结合的甲醇甲醇的逐步机制。通过构建基于DFT的微急性模型,包括齐心联和逐步反应,可以在密切地模仿实验应用条件的条件下计算产物形成速率。通过基于DFT的微因模型,测量率的趋势相对较好。我们发现与DME的苯甲酯比甲醇更快,但随着温度的增加,差异降低。在低温下,协同机制占主导地位,然而在较高的温度下并且低压力机构转移到逐步途径。这种转变发生在甲醇的较低温度下而不是DME,导致甲醇和DME在高温下的反应性差异较小。我们的理论实验方法表明,含氧化合物和烃分压中的众所周知的速率法和第一顺序通常不适用于施加的温度,压力和饲料组合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号