...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Supported lipid bilayer platforms to probe cell mechanobiology
【24h】

Supported lipid bilayer platforms to probe cell mechanobiology

机译:支持探针细胞机制的脂质双层平台

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract Mammalian and bacterial cells sense and exert mechanical forces through the process of mechanotransduction, which interconverts biochemical and physical signals. This is especially important in contact-dependent signaling, where ligand-receptor binding occurs at cell-cell or cell-ECM junctions. By virtue of occurring within these specialized junctions, receptors engaged in contact-dependent signaling undergo oligomerization and coupling with the cytoskeleton as part of their signaling mechanisms. While our ability to measure and map biochemical signaling within cell junctions has advanced over the past decades, physical cues remain difficult to map in space and time. Recently, supported lipid bilayer (SLB) technologies have emerged as a flexible platform to mimic and perturb cell-cell and cell-ECM junctions, allowing one to study membrane receptor mechanotransduction. Changing the lipid composition and underlying substrate tunes bilayer fluidity, and lipid and ligand micro- and nano-patterning spatially control positioning and clustering of receptors. Patterning metal gridlines within SLBs confines lipid mobility and introduces mechanical resistance. Here we review fundamental SLB mechanics and how SLBs can be engineered as tunable cell substrates for mechanotransduction studies. Finally, we highlight the impact of this work in understanding the biophysical mechanisms of cell adhesion. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Graphical abstract Display Omitted Highlights ? SLBs functionalized with adhesion proteins form artificial junctions with cells. ? Chromium barriers serve as diffusion gates and sites of mechanical resistance. ? Molecular tension probes report pN forces on SLBs. ? Cells adhered to stacked or patterned SLBs exhibit distinct phenotypes. ]]>
机译:摘要哺乳动物和细菌细胞通过机电展示过程感测和施加机械力,其互连生物化学和物理信号。这在接触依赖性信号中尤为重要,其中在细胞 - 细胞或细胞-ECM结处发生配体受体结合。借助于在这些专用连接内发生,接触依赖性信号传导的受体经历寡聚化并与细胞骨架偶联,作为其信号传导机构的一部分。虽然我们在过去几十年中,我们在细胞交叉点中测量和映射生物化学信号传导的能力,但在空间和时间内仍然难以映射物理线索。最近,支持的脂质双层(SLB)技术已成为模拟和扰动细胞 - 细胞和细胞-ECM结的柔性平台,允许人们研究膜受体机电调节。改变脂质组合物和底层基质调节双层流体,以及脂质和配体微且微图案的空间控制定位和受体的聚类。 SLBS内的图案化金属网格线限制了脂质流动性并引入了机械阻力。在这里,我们审查了基本的SLB力学以及SLBS如何设计为用于机械调节研究的可调细胞基板。最后,我们突出了这项工作对理解细胞粘附的生物物理机制的影响。本文是标题的特殊问题的一部分:Kalina Hristova编辑细胞膜中膜受体之间的相互作用。图形抽象显示省略了亮点?用粘附蛋白官能化的SLBS形成具有细胞的人造结。还铬屏障用作扩散栅极和机械抗性部位。还分子张力探针报告PN力量在SLB上。还粘附在堆叠或图案化的SLB上的细胞表现出明显的表型。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号