首页> 外文期刊>Brain stimulation >tDCS changes in motor excitability are specific to orientation of current flow
【24h】

tDCS changes in motor excitability are specific to orientation of current flow

机译:TDCS在电机兴奋的变化是特定于电流的方向

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Background Measurements and models of current flow in the brain during transcranial Direct Current Stimulation (tDCS) indicate stimulation of regions in-between electrodes. Moreover, the folded cortex results in local fluctuations in current flow intensity and direction, and animal studies suggest current flow direction relative to cortical columns determines response to tDCS. Methods Here we test this idea by using Transcranial Magnetic Stimulation Motor Evoked Potentials (TMS-MEP) to measure changes in corticospinal excitability following tDCS applied with electrodes aligned orthogonal (across) or parallel to M1 in the central sulcus. Results Current flow models predicted that the orthogonal electrode montage produces consistently oriented current across the hand region of M1 that flows along cortical columns, while the parallel electrode montage produces non-uniform current directions across the M1 cortical surface. We find that orthogonal, but not parallel, orientated tDCS modulates TMS-MEPs. We also show modulation is sensitive to the orientation of the TMS coil (PA or AP), which is thought to select different afferent pathways to M1. Conclusions Our results are consistent with tDCS producing directionally specific neuromodulation in brain regions in-between electrodes, but shows nuanced changes in excitability that are presumably current direction relative to column and axon pathway specific. We suggest that the direction of current flow through cortical target regions should be considered for targeting and dose-control of tDCS. Highlights ? Direction of current flow is important for tDCS after-effects. ? tDCS modulates excitability between two electrodes. ? tDCS differentially modulates PA and AP inputs into M1.
机译:摘要背景测量和脑经颅直流刺激(TDCS)的电流流动模型表示电极区内区域的刺激。此外,折叠的皮质导致电流流强度和方向的局部波动,动物研究表明电流流向相对于皮质列来确定对TDC的响应。方法在这里,我们通过使用经颅磁刺激电动机诱发电位(TMS-MEP)来测试该思想,以在施加与中央沟中的正交(跨越)或平行于M1的电极施加的TDC之后测量皮质脊柱兴奋性的变化。结果电流流动模型预测,正交电极蒙太奇在沿着皮质柱流动的M1的手区域产生一致的导向电流,而平行电极蒙太奇在M1皮质表面上产生非均匀的电流方向。我们发现正交,但不是并行,定向TDCS调制TMS-MEPS。我们还显示调制对TMS线圈(PA或AP)的方向敏感,这被认为选择不同的传入路径到M1。结论我们的结果与TDC在电极之间产生定向特异性神经调节的TDC,但是兴奋性的细节变化,其具有相对于柱和轴突途径特异性的电流方向。我们建议应考虑通过皮质目标区域的电流流动方向用于TDC的靶向和剂量控制。强调 ?电流的方向对于TDCS后效应很重要。还TDCS调制两个电极之间的兴奋性。还TDCS差异地调制PA和AP输入到M1中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号