首页> 外文期刊>Cytogenetic and genome research >Telomeres, histone code, and DNA damage response
【24h】

Telomeres, histone code, and DNA damage response

机译:端粒,组蛋白密码和DNA损伤反应

获取原文
获取原文并翻译 | 示例
       

摘要

Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated ith telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methyl-ation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may bethe deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.
机译:基因组稳定性由端粒维持,端粒是保护染色体免受融合或降解的末端结构。端粒重复序列的缩短或缺失或端粒染色质结构的改变与端粒功能障碍(如染色体端对端关联)可能会导致基因组不稳定和基因扩增相关。端粒末端的结构使得其DNA与DNA双链断裂(DSB)不同,从而避免了非同源末端连接(NHEJ),这是通过形成独特的高阶核蛋白结构来实现的。端粒附着在核基质上,并具有独特的染色质结构。这种特殊的结构是否通过特定的染色质变化得以维持尚待深入研究。转录调控中涉及的染色质修饰被认为是组蛋白蛋白质密码(组蛋白密码)的结果。认为该密码涉及组蛋白的磷酸化,乙酰化,甲基化,泛素化和磺基化,其通过破坏染色质接触或通过将非组蛋白蛋白质募集到染色质来调节染色质可及性。独特的组蛋白尾蛋白相互作用促进参与的组蛋白密码可能是选择特定DSB修复途径的决定因素。最近的证据表明,这种机制参与了DNA损伤的检测和修复。端粒染色质结构的改变已与缺陷的DNA损伤反应(DDR)相关联,真核细胞已利用熟练的DNA修复和细胞周期检查点发展了DDR机制,以维持基因组稳定性。最近的研究表明,染色质修饰因子在维持基因组稳定性中起关键作用。这篇综述将总结DNA损伤修复蛋白,特别是共济失调-毛细血管扩张突变(ATM)及其效应子和端粒复合体在维持基因组稳定性中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号