首页> 外文期刊>Cytogenetic and genome research >Chromosome organization and chromatin modification: influence on genome function and evolution
【24h】

Chromosome organization and chromatin modification: influence on genome function and evolution

机译:染色体组织和染色质修饰:对基因组功能和进化的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Historic modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution. Copyright (c) 2006 S. Karger AG, Basel.
机译:核小体的历史性修饰可区分常染色体染色质状态与异染色质状态,区分真核生物中的基因调控与原核生物,并似乎允许真核生物将重组事件集中在最高基因浓度的区域。调节细胞谱系向其分化状态的定向的另外四个表观遗传机制涉及分化状态的遗传,例如DNA甲基化,RNA干扰,相间区室之间的基因重新定位和基因复制时间。使用的其他机制的数量随着分类单元的体细胞复杂性而增加。从一个基因座转录的siRNA能够在远端,但互补的基因座中以反义RNAi相关的成核方式靶向异端染色质,而这些位点似乎是沿着染色体协调染色质状态的关键。当异色时,大多数基因是无活性的。但是,β-异染色质中的基因实际上需要异色状态才能发挥其活性,这种特性可以将诸如siRNA的基因唯一地定位为靶向源基因座和远端基因座的异染色质。脊椎动物的染色体被组织成永久性结构,在S期,该结构调节复制子簇的同时发射。晚期复制簇在中期被视为G波段,在减数分裂期间被视为减数分裂染色体,体现了对全部五种自我增强表观遗传机制的本体利用,以调节可逆的染色质状态,称为兼性(条件性)异染色质。由带边界分隔的交替的常染色质/异染色质结构域,以及在本体论承诺过程中G波段基因的相间重定位可以对减数分裂相互作用和哺乳动物核型进化都施加约束。版权所有(c)2006 S.Karger AG,巴塞尔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号