> There is substantial interest in engineering '/> An Engineered Glycerol Dehydratase With Improved Activity for the Conversion of meso‐2,3‐butanediol to Butanone
首页> 外文期刊>Biotechnology Journal: Healthcare,Nutrition,Technology >An Engineered Glycerol Dehydratase With Improved Activity for the Conversion of meso‐2,3‐butanediol to Butanone
【24h】

An Engineered Glycerol Dehydratase With Improved Activity for the Conversion of meso‐2,3‐butanediol to Butanone

机译:一种工程化甘油脱水酶,具有改善的活性,用于将Meso-2,3-丁二醇转化为丁酮

获取原文
获取原文并翻译 | 示例
           

摘要

> There is substantial interest in engineering microorganisms to produce industrial chemicals that are currently derived from petroleum. One of these petrochemicals is butanone, which could be produced from microbially synthesized 2,3‐butanediol through the action of a suitable dehydratase enzyme. Unfortunately, however, there are no known enzymes that natively catalyze this reaction. In this work, the authors set out to engineer the B 12 ‐dependent glycerol dehydratase from Klebsiella pneumoniae ( Kp GDHt), in order to increase its activity for the conversion of meso ‐2,3‐butanediol into butanone. The authors began by fusing the α and β subunits of the enzyme, to simplify downstream high‐throughput screening protocols. Serendipitously, the fusion protein showed a 20°C increase in its temperature optimum. Using this stabilized scaffold as a starting point, the authors employed the combinatorial active site saturation test and consensus‐guided mutagenesis to randomize 28 residues within 12 ? of the Kp GDHt active site. By screening over 5500 variants, the authors discovered a single point mutation (T200S) that increased the catalytic efficiency of meso ‐2,3‐butanediol dehydration by four‐fold, to a value of k cat / K M ?=?5.1?×?10 3 M ?1 s ?1 . Thus the authors report what is, to date, the most comprehensive mutagenesis and the largest engineered increase in catalytic efficiency on the B 12 ‐dependent glycerol dehydratase scaffold.
机译: <第XML:ID =“Biot201700480-SEC-0001”> > 对工程微生物具有大量兴趣,以生产目前来自石油的工业化学品。这些石油化学物质中的一种是丁酮,可以通过合适的脱水酶的作用从微生物合成的2,3-丁二醇生产。然而,遗憾的是,没有已知的酶本身催化该反应。在这项工作中,作者向B创建了B 12 - 依赖甘油脱水酶 Klebsiella pneumoniae ( kp GDHT),以增加其活动的转变 meso -2,3-丁二醇进入丁酮。作者开始融合酶的α和β亚基,以简化下游高通量筛选方案。偶然,融合蛋白在其温度上增加20℃。使用这种稳定的支架作为起点,作者使用组合活性位点饱和试验和共有导向的诱变,以在12中随机化28个残留物?的 kp GDHT活跃网站。通过筛选超过5500种变种,作者发现了一种增加催化效率的单点突变(T200s) meso -2,3-丁二醇脱水四倍,以值 k cat / k m ?=?5.1?×10 3 M. ?1 S. ?1 。因此,作者报告了迄今为止,最综合的诱变和最大的催化效率提高B 12 - 依赖甘油脱水酶支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号