首页> 外文期刊>Biotechnology and Bioengineering >Three-dimensional imaging and quantification of real-time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy
【24h】

Three-dimensional imaging and quantification of real-time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy

机译:使用激光扫描共聚焦显微镜培养的微孔细胞实时细胞溶质钙振荡的三维成像和定量

获取原文
获取原文并翻译 | 示例
           

摘要

The development of a minimally invasive, robust, and inexpensive technique that permits real-time monitoring of cell responses on biomaterial scaffolds can improve the eventual outcomes of scaffold-based tissue engineering strategies. Towards establishing correlations between in situ biological activity and cell fate, we have developed a comprehensive workflow for real-time volumetric imaging of spatiotemporally varying cytosolic calcium oscillations in pure microglial cells cultured on electrospun meshes. Live HMC3 cells on randomly oriented electrospun fibers were stained with a fluorescent dye and imaged using a laser scanning confocal microscope. Resonance scanning provided high-resolution in obtaining the time-course of intracellular calcium levels without compromising spatial and temporal resolution. Three-dimensional reconstruction and depth-coding enabled the visualization of cell location and intracellular calcium levels as a function of sample thickness. Importantly, changes in cell morphology and in situ calcium spiking were quantified in response to a soluble biochemical cue and varying matrix architectures (i.e., randomly oriented and aligned fibers). Importantly, raster plots generated from spiking data revealed calcium signatures specific to culture conditions. In the future, our approach can be used to elucidate correlations between calcium signatures and cell phenotype/activation, and facilitate the rational design of scaffolds for biomedical applications.
机译:开发允许对生物材料支架上的细胞反应实时监测的微创,鲁棒和廉价技术的开发可以改善基于脚手架的组织工程策略的最终结果。为了建立原位生物活性和细胞命运之间的相关性,我们开发了一种综合工作流程,用于在纯纺丝网上培养的纯微胶质细胞中的现时变化的胞质钙振荡的实时体积成像。随机取向的电纺纤维上的活HMC3细胞用荧光染料染色并使用激光扫描共聚焦显微镜进行成像。共振扫描提供了高分辨率,在不影响空间和时间分辨率的情况下获得细胞内钙水平的时间过程。三维重建和深度编码使细胞位置和细胞内钙水平的可视化作为样品厚度的函数。重要的是,响应于可溶性生物化学提示和不同的基质架构(即,随机取向和对准纤维)来定量细胞形态和原位钙尖峰的细胞形态和原位钙尖峰的变化。重要的是,从尖峰数据产生的光栅图显示出特异于培养条件的钙签名。未来,我们的方法可用于阐明钙签名和细胞表型/活化之间的相关性,并促进用于生物医学应用的支架的合理设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号