首页> 外文期刊>Biotechnology and Bioengineering >Cellular physiology controls photoautotrophic production of 1,2-propanediol from pools of CO2 and glycogen
【24h】

Cellular physiology controls photoautotrophic production of 1,2-propanediol from pools of CO2 and glycogen

机译:细胞生理学控制来自二氧化碳和糖原池的1,2-丙二醇的光学营养生产

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing C-13 labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.
机译:Synechocystis sp。 PCC 6803 Pg是一种染色体菌株,其能够通过异源三步途径和源自大肠杆菌作为初始酶的异源三步途径和甲基乙醛合成酶(Mgs)合成1,2-丙二醇。生产窗口仅限于晚期生长和静止相,并且显然与糖原转化率相连。为了了解Calvin-Benson-Bassham(CBB)循环和糖原在1,2-丙二醇产生的碳分配的碳分配的基本原理,已经进行了使用C-13标记的CO 2的实验。在永久照明和暗条件下,在永久照明和暗条件下监测了生物质,储存化合物和产物之间的碳通量和分配。大约四分之一的碳掺入源自糖原的1,2-丙二醇中,而其余的源自在产物形成期间在CBB循环中固定的CO 2。此外,1,2-丙二醇合成取决于光合活性辐射和糖原分解代谢的可用性。我们假设来自大肠杆菌的MGS的调节与在SyneChocystis SP中导致1,2-丙二醇的异源反应冲突。 PCC 6803 PG。另外,在大肠杆菌中编码甲基甘油旁通道的基因的同源性比较表明,在SyneChocystis Sp中也存在这种途径的存在。 PCC 6803.这些发现对于通过MGS偶联与CBB循环中间二羟基丙酮磷酸盐的所有异源途径至关重要,并揭示可能的工程靶标进行合理应变优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号