...
首页> 外文期刊>Biophysical reviews >Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane (Saccharum officinarum) by structure-based site-directed mutagenesis
【24h】

Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane (Saccharum officinarum) by structure-based site-directed mutagenesis

机译:基于组织的位向诱变甘蔗(Saccharum OfficinArum)蔗糖磷酸盐合成酶糖基转移酶域UDP-葡萄糖结合位点的鉴定

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sucrose phosphate synthase (SPS) is believed to be the key enzyme for controlling the biosynthesis of sucrose. SPSs consist of a functional glycosyltransferase domain that shares conserved residueswith the glycosyltransferase domain of sucrose biosynthesisrelated protein. The formation of sucrose-6-phosphate is catalyzed by SPS with the transfer of a glycosyl group of uridine diphosphate glucose (UDP-G) as an activated donor sugar to a fructose-6-phosphate as a sugar acceptor. However, understanding of the mechanism of catalytic and substrate binding in SPS is very limited. Based on amino acid sequence alignments with several enzymes that belong to the glycosyltransferase family, theUDP-G binding sites thatmight be critical for catalytic mechanismwere identified. Here, we report that single point mutation of R496, D498, and V570 located in the proposed UDP-G binding site led to less active or complete loss of enzyme activity. Through structure-based site-directed mutagenesis and biochemical studies, the results indicated that these residues contribute to the catalytic activity of plant SPS. Moreover, understanding of the UDP-G binding site provides an insight into new strategies for enzyme engineering and redesigning a catalytic mechanism for UDP.
机译:据信蔗糖磷酸合酶(SPS)是用于控制蔗糖生物合成的关键酶。 SPSS由官能糖基转移酶结构域组成,其共享保守的残留物,其蔗糖生物合成蛋白的糖基转移酶结构域。通过SPS将蔗糖-6-磷酸酯的形成随着尿苷二磷酸葡萄糖(UDP-G)的糖基作为活化的供体糖转移到糖糖受体作为糖受体。然而,了解SPS中催化和底物结合机制的理解非常有限。基于氨基酸序列与几种属于糖基转移酶系列的酶的比对,TheudP-G结合位点对于鉴定的催化机制至关重要。这里,我们报告称,位于所提出的UDP-G结合位点的R496,D498和V570的单点突变导致酶活性的较少活跃或完全丧失。通过基于结构的位点诱变和生化研究,结果表明这些残基有助于植物SP的催化活性。此外,对UDP-G结合位点的理解提供了对酶工程的新策略和重新设计UDP的催化机制的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号