首页> 外文期刊>Biomechanics and modeling in mechanobiology >A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows
【24h】

A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows

机译:一种分析心血管流动墙剪应力固定点和歧管的欧拉方法

获取原文
获取原文并翻译 | 示例
       

摘要

Based upon dynamical systems theory, a fixed point of a vector field such as the wall shear stress (WSS) at the luminal surface of a vessel is a point where the vector field vanishes. Unstable/stable manifolds identify contraction/expansion regions linking fixed points. The significance of such WSS topological features lies in their strong link with "disturbed" flow features like flow stagnation, separation and reversal, deemed responsible for vascular dysfunction initiation and progression. Here, we present a Eulerian method to analyze WSS topological skeleton through the identification and classification of WSS fixed points and manifolds in complex vascular geometries. The method rests on the volume contraction theory and analyzes the WSS topological skeleton through the WSS vector field divergence and Poincare ' index. The method is here applied to computational hemodynamics models of carotid bifurcation and intracranial aneurysm. An in-depth analysis of the time dependence of the WSS topological skeleton along the cardiac cycle is provided, enriching the information obtained from cycle-average WSS. Among the main findings, it emerges that on the carotid bifurcation, instantaneous WSS fixed points co-localize with cycle-average WSS fixed points for a fraction of the cardiac cycle ranging from 0 to14.5%; a persistent instantaneous WSS fixed point confined on the aneurysm dome does not co-localize with the cycle-average low-WSS region. In conclusion, the here presented approach shows the potential to speed up studies on the physiological significance of WSS topological skeleton in cardiovascular flows, ultimately increasing the chance of finding mechanistic explanations to clinical observations.
机译:基于动态系统理论,诸如船舶腔表面的壁剪切应力(WSS)的矢量场的固定点是矢量场消失的点。不稳定/稳定的歧管识别连接固定点的收缩/膨胀区域。这种WSS拓扑功能的重要性在于它们的强烈连杆与“受扰动”的流动特征,如流动停滞,分离和逆转,视为血管功能障碍引发和进展。在这里,我们提出了一种欧拉方法来通过在复杂的血管几何形状中的识别和分类中来分析WSS拓扑骨架和歧管。该方法依赖于体积收缩理论,并通过WSS Vector Field Divercence和Poincare'指数分析WSS拓扑骨架。该方法在这里应用于颈动脉分叉和颅内动脉瘤的计算血流动力学模型。提供了对WSS拓扑骨架沿心动周期的时间依赖性的深度分析,丰富了从循环平均WSS获得的信息。在主要结果中,它出现在颈动脉分叉上,瞬时WSS固定点与循环平均WSS固定点共定为一分的心循环,范围为0至14.5%;限制在动脉瘤圆顶上限制的持续瞬时WSS固定点与周期平均低WSS区域不共同定位。总之,这里提出的方法显示了加速研究WSS拓扑骨架在心血管流动中的生理意义的研究,最终增加了发现机制解释的机会对临床观察的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号