首页> 外文期刊>Biomechanics and modeling in mechanobiology >Migration and differentiation of osteoclast precursors under gradient fluid shear stress
【24h】

Migration and differentiation of osteoclast precursors under gradient fluid shear stress

机译:梯度流体剪切应力下破骨细胞前体的迁移和分化

获取原文
获取原文并翻译 | 示例
       

摘要

The skeleton can adapt to mechanical loading through bone remodeling, and osteoclasts close to microdamages are believed to initiate bone resorption. However, whether local mechanical loading, such as fluid flow, regulates recruitment and differentiation of osteoclast precursors at the site of bone resorption has yet to be investigated. In the present study, finite element analysis first revealed the existence of a low-fluid shear stress (FSS) field inside microdamage. Based on a custom-made device of cone-and-plate fluid chamber, finite element analysis and particle image velocimetry measurement were performed to verify the formation of gradient FSS flow field. Furthermore, the effects of gradient FSS on the migration, aggregation, and fusion of osteoclast precursors were observed. Osteoclast precursor RAW264.7 cells migrated along a radial direction toward the region with decreased FSS during exposure to gradient FSS stimulation for 40 min, thereby deviating from the direction of actual fluid flow indicated by fluorescent particles. When calcium signaling pathway was inhibited by gadolinium and thapsigargin, cell migration toward a low-FSS region was significantly reduced. For the other cell lines MC3T3-E1, PDLF, rat mesenchymal stem cells, and Madin-Darby canine kidney epithelial cells, gradient FSS stimulation did not lead to low-FSS inclined migration. After being cultured under gradient FSS stimulation for 6 days, RAW264.7 cells showed significantly higher density and ratio of TRAP-positive multinucleated osteoclasts in the low-FSS region to those in the high-FSS region. Therefore, osteoclast precursor cells may exhibit the special ability to sense FSS gradient and tend to actively migrate toward low-FSS regions, which are regulated by calcium signaling pathway.
机译:骨架可以通过骨重塑适应机械负载,并且据信靠近微岩的破骨细胞引发骨吸收。然而,尚未研究局部机械载荷,例如流体流动,调节骨吸收骨吸化位点的灌注和分化的局部机械负荷尚未得到研究。在本研究中,有限元分析首先揭示了微道内部的低流体剪切应力(FSS)场。基于锥形板流体室的定制装置,进行有限元分析和粒子图像速度测量以验证梯度FSS流场的形成。此外,观察到梯度FSS对迁移,聚集和疏松疏松疏松疏松骨质前体的融合的影响。骨壳前体Raw264.7细胞沿着径向方向迁移到该区域,在暴露于梯度FSS刺激期间40分钟,从而偏离由荧光颗粒所示的实际流体流动的方向偏离。当通过钆和碎屑抑制钙信号通路时,朝向低FSS区域迁移的细胞迁移显着降低。对于其他细胞系MC3T3-E1,PDLF,大鼠间充质干细胞和Madin-Darby犬肾上皮细胞,梯度FSS刺激不会导致低FSS倾斜迁移。在梯度FSS刺激下培养6天后,Raw264.7细胞显示出低FSS区域中的捕获阳性多核骨质体的密度和比例明显较高,并且在高FSS区域中的那些。因此,破骨细胞前体细胞可以表现出感测FSS梯度的特殊能力,并且倾向于主动迁移到低FSS区域,这些区域由钙信号通路调节。

著录项

  • 来源
  • 作者单位

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

    Chinese Acad Sci Inst Elect State Key Lab Transducer Technol Beijing 100190 Peoples R China;

    Beijing Inst Technol Sch Aerosp Engn Dept Mech Biomech Lab 5 South Zhong Guan Can St Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物力学;
  • 关键词

    Gradient fluid shear stress; Osteoclast precursor; Migration; Fusion; Calcium signaling pathway;

    机译:梯度流体剪切应力;骨壳前体;迁移;融合;钙信号通路;
  • 入库时间 2022-08-19 22:55:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号