首页> 外文期刊>Biomechanics and modeling in mechanobiology >Fluid-structure interaction simulations of patient-specific aortic dissection
【24h】

Fluid-structure interaction simulations of patient-specific aortic dissection

机译:患者特异性主动脉夹层的流体结构相互作用模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Credible computational fluid dynamic (CFD) simulations of aortic dissection are challenging, because the defining parallel flow channels-the true and the false lumen-are separated from each other by a more or less mobile dissection membrane, which is made up of a delaminated portion of the elastic aortic wall. We present a comprehensive numerical framework for CFD simulations of aortic dissection, which captures the complex interplay between physiologic deformation, flow, pressures, and time-averaged wall shear stress (TAWSS) in a patient-specific model. Our numerical model includes (1) two-way fluid-structure interaction (FSI) to describe the dynamic deformation of the vessel wall and dissection flap; (2) prestress and (3) external tissue support of the structural domain to avoid unphysiologic dilation of the aortic wall and stretching of the dissection flap; (4) tethering of the aorta by intercostal and lumbar arteries to restrict translatory motion of the aorta; and a (5) independently defined elastic modulus for the dissection flap and the outer vessel wall to account for their different material properties. The patient-specific aortic geometry is derived from computed tomography angiography (CTA). Three-dimensional phase contrast magnetic resonance imaging (4D flow MRI) and the patient's blood pressure are used to inform physiologically realistic, patient-specific boundary conditions. Our simulations closely capture the cyclical deformation of the dissection membrane, with flow simulations in good agreement with 4D flow MRI. We demonstrate that decreasing flap stiffness from Eflap=800 kPa (a) increases the displacement of the dissection flap from 1.4 to 13.4 mm, (b) decreases the surface area of TAWSS by a factor of 2.3, (c) decreases the mean pressure difference between true lumen and false lumen by a factor of 0.63, and (d) decreases the true lumen flow rate by up to 20% in the abdominal aorta. We conclude that the mobility of the dissection flap substantially influences local hemodynamics and therefore needs to be accounted for in patient-specific simulations of aortic dissection. Further research to accurately measure flap stiffness and its local variations could help advance future CFD applications.
机译:主动脉夹层的可信计算流体动态(CFD)模拟是具有挑战性的,因为定义并联流动通道 - 真实的腔和假腔 - 通过或多或少的移动分层膜彼此分开,其由分层部分组成弹性主动脉壁。我们为主动脉夹层的CFD模拟提供了一种综合的数值框架,其捕获了患者特异性模型中的生理变形,流动,压力,压力,压力和时间平均壁剪切应力(Tawss)之间的复杂相互作用。我们的数值模型包括(1)双向流体结构相互作用(FSI),以描述血管壁和解剖皮瓣的动态变形; (2)预应力和(3)结构域的外部组织载体,避免主动脉壁的失利扩张和剖面瓣; (4)通过肋系统和腰动脉的主动脉束缚,以限制主动脉的平移运动;和(5)用于分析翼片的独立定义的弹性模量和外部血管壁,以考虑其不同的材料特性。患者特异性主动脉几何形状衍生自计算断层造影血管造影(CTA)。三维相位对比磁共振成像(4D流动MRI)和患者的血压用于提供生理上的患者特异性的边界条件。我们的模拟密切捕获解剖膜的周期性变形,流量模拟与4D流动MRI良好。我们证明,从eflap = 800kPa(a)的瓣膜刚度降低增加了剖析瓣从1.4〜13.4 mm的移位,(b)将Taws的表面积减少2.3,(c)降低平均压力差真正的腔和假管腔在0.63倍之间,(d)降低腹主动脉在腹主动脉中的真正流量流速高达20%。我们得出结论,解剖皮瓣的迁移率大大影响了局部血流动力学,因此需要在特异性患者的主动脉夹层模拟中进行占。进一步的研究,以准确测量皮瓣僵硬,其本地变体可以帮助推进未来的CFD应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号