首页> 外文期刊>Biofabrication >Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices
【24h】

Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices

机译:用于制备微流体装置的求挤压的牺牲卡波波油墨印刷

获取原文
获取原文并翻译 | 示例
           

摘要

Current technologies for manufacturing of microfluidic devices include soft-lithography, wet and dry etching, thermoforming, micro-machining and three-dimensional (3D) printing. Among them, soft-lithography has been the mostly preferred one in medical and pharmaceutical fields due to its ability to generate polydimethylsiloxane (PDMS) devices with resin biocompatibility, throughput and transparency for imaging. It is a multi-step process requiring the preparation of a silicon wafer pattern, which is fabricated using photolithography according to a defined mask. Photolithography is a costly, complicated and time-consuming process requiring a clean-room environment, and the technology is not readily accessible in most of the developing countries. In addition, generated patterns on photolithography-made silicon wafers do not allow building 3D intricate shapes and silicon direct bonding is thus utilized for closed fluid channels and complex 3D structures. 3D Printing ofPDMS has recently gained significant interest due to its ability to define complex 3D shapes directly from user-defined designs. In this work, we investigated Carbopol as a sacrificial gel in order to create microfluidic channels inPDMS devices. Our study demonstrated that Carbopol ink possessed a shear-thinning behavior and enabled the extrusion-based printing of channel templates, which were overlaid with PDMS to create microfluidic devices upon curing ofPDMS and removal of the sacrificial Carbopol ink. To demonstrate the effectiveness of the fabricated devices, channels were lined up with human umbilical vein endothelial cells (HUVECs) and human bone marrow endothelial cells (BMECs) in separate devices, where both HUVECs and BMECs demonstrated the formation of endothelium with highly aligned cells in the direction of fluid flow. Overall, we here present a highly affordable and practical approach in fabrication ofPDMS devices with closed fluid channels, which have great potential in a myriad of applications from cancer treatments to infectious disease diagnostics to artificial organs.
机译:用于制造微流体装置的当前技术包括软光刻,湿和干蚀刻,热成型,微加工和三维(3D)印刷。其中,由于其能够产生具有树脂生物相容性,产量和透明性的聚二甲基硅氧烷(PDMS)器件,因此,软光刻是医学和药物中的主要优选的一种。它是需要制备硅晶片图案的多步骤,其使用根据限定的掩模使用光刻法制造。光刻是一种昂贵的,复杂且耗时的过程,需要洁净室环境,并且在大多数发展中国家,该技术不易易于访问。另外,在光刻制造的硅晶片上的产生图案不允许构建3D复杂的形状,因此用于晶体直接键合用于封闭的流体通道和复杂的3D结构。由于能够直接从用户定义的设计中定义复杂的3D形状,3D打印最近的PDMS最近获得了显着的兴趣。在这项工作中,我们调查了Carbopol作为牺牲凝胶,以创造微流体通道Inpdms器件。我们的研究表明,Carbopol墨水具有剪切稀疏行为,并使能基于挤出的通道模板的印刷,其覆盖有PDM,以在普遍固化和去除牺牲的Carbopol油墨时产生微流体装置。为了证明所制造的装置的有效性,在单独的装置中与人的脐静脉内皮细胞(HUVECS)和人骨髓内皮细胞(BMEC)排列,其中HUVECS和BMEC都表现出内皮细胞的高度对准细胞流体流动的方向。总的来说,我们在这里提出了一种在具有封闭流体通道的斑块设备的制造中具有高度实惠和实用的方法,这些方法在癌症治疗中具有巨大的应用,对人工器官的传染病诊断具有很大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号